Advanced Search
Article Contents
Article Contents

On formation of singularity for non-isentropic Navier-Stokes equations without heat-conductivity

Abstract Related Papers Cited by
  • It is known that smooth solutions to the non-isentropic Navier-Stokes equations without heat-conductivity may lose their regularity in finite time in the presence of vacuum. However, in spite of the recent progress on such blowup phenomena, it remains to give a possible blowup mechanism. In this paper, we present a simple continuation principle for such system, which asserts that the concentration of the density or the temperature occurs in finite time for a large class of smooth initial data, which is responsible for the breakdown of classical solutions. It also gives an affirmative answer to a strong version of a problem proposed by J.Nash in 1950s.
    Mathematics Subject Classification: Primary: 35B65, 35Q35, 76N10.


    \begin{equation} \\ \end{equation}
  • [1]

    Y. Cho and B. J. Jin, Blow-up of viscous heat-conducting compressible flows, J. Math.Anal. Appl., 320 (2006), 819-826.doi: 10.1016/j.jmaa.2005.08.005.


    Y. Cho and H. Kim, Existence results for viscous polytropic fluids with vacuum, J. Differ. Eqns., 228 (2006), 377-411.doi: 10.1016/j.jde.2006.05.001.


    J. S. Fan, S. Jiang and Y. B. Ou, A blow-up criterion for compressible viscous heat-conductive flows, Annales de l'Institut Henri Poincare (C) Analyse non lineaire., 27 (2010), 337-350.doi: 10.1016/j.anihpc.2009.09.012.


    E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford University Press, 2004.


    D. Hoff, Discontinuous solutions of the Navier-Stokes equations for multidimensional flows of heat-conducting fluids, Arch. Rational Mech. Anal., 139 (1997), 303-354.doi: 10.1007/s002050050055.


    D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J.Differ Eqns., 120 (1995), 215-254.doi: 10.1006/jdeq.1995.1111.


    B. Haspot, Regularity of weak solutions of the compressible barotropic Navier-Stokes equations, preprint, arXiv:1001.1581


    X. D. Huang, Some Results on Blowup of Solutions to the Compressible Navier-Stokes Equations, Ph.D thesis, The Chinese University of Hong Kong, 2009.


    X. D. Huang and J. Li, On breakdown of solutions to the full compressible Navier-Stokes equations, Methods Appl. Anal., 16 (2009), 479-490.doi: 10.4310/MAA.2009.v16.n4.a4.


    X. D. Huang and J. Li, Global classical and weak solutions to the three-dimensional full compressible Navier-Stokes system with vacuum and large oscillations., preprint, arXiv:1107.4655.


    X. D. Huang and J. Li, Serrin-type blowup criterion for viscous, compressible, and heat conducting Navier-Stokes and magnetohydrodynamic flows, Comm. Math. Phys., 324 (2013), 147-171.doi: 10.1007/s00220-013-1791-1.


    X. D. Huang, J. Li and Z. P. Xin, Serrin type criterion for the three-dimensional viscous compressible flows, Siam J. Math. Anal., 43 (2011), 1872-1886.doi: 10.1137/100814639.


    X. D. Huang, J. Li and Z. P. Xin, Blowup criterion for viscous barotropic flows with vacuum states, Comm. Math. Phys., 301 (2011), 23-35.doi: 10.1007/s00220-010-1148-y.


    X. D. Huang, J. Li and Z. P. Xin, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations, Comm. Pure Appl. Math., 65 (2012), 549-585.doi: 10.1002/cpa.21382.


    X. D. Huang and Z. P. Xin, A blow-up criterion for classical solutions to the compressible Navier-Stokes equations, Sci. in China., 53 (2010), 671-686.doi: 10.1007/s11425-010-0042-6.


    P. L. Lions, Mathematical Topics in Fluid Mechanics.Compressible Models, New York, Oxford University Press, 2, 1998.


    A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67-104.


    J. Nash, Le problème de Cauchy pour les équations différentielles d'un fluide général, Bull. Soc. Math. France., 90 (1962), 487-497.


    J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer.J. Math., 80 (1958), 931-954.doi: 10.2307/2372841.


    L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa., 13 (1959), 115-162.


    O. Rozanova, Blow up of smooth solutions to the compressible Navier-Stokes equations with the data highly decreasing at infinity, J.Differ Eqns., 245 (2008), 1762-1774.doi: 10.1016/j.jde.2008.07.007.


    D. Serre, Variations de grande amplitude pour la densite d'un fluide visqueux compressible, Phys. D., 48 (1991), 113-128.doi: 10.1016/0167-2789(91)90055-E.


    J. Serrin, On the uniqueness of compressible fluid motion, Arch. Rational Mech. Anal., 3 (1959), 271-288.


    J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations, Arch. Rational Mech. Anal., 9 (1962), 187-195.


    Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, J. Math. Pures Appl., 95 (2011), 36-47.doi: 10.1016/j.matpur.2010.08.001.


    Y. Z. Sun, C. Wang and Z. F. Zhang, A Beale-Kato-Majda criterion for three dimensional compressible viscous heat-conductive flows, Arch. Rational Mech. Anal., 201 (2011), 727-742.doi: 10.1007/s00205-011-0407-1.


    V. A. Vaigant and A. V. Kazhikhov, On existence of global solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid, Sib. Math. J., 36 (1995), 1283-1316.doi: 10.1007/BF02106835.


    Z. P. Xin, Blowup of smooth solutions to the compressible Navier-Stokes equation with compact density, Comm. Pure Appl. Math., 51 (1998), 229-240.doi: 10.1002/(SICI)1097-0312(199803)51:3<229::AID-CPA1>3.0.CO;2-C.


    Z. P. Xin and W. Yan, On Blowup of classical solutions to the compressible Navier-Stokes equations, Comm. Math. Phys., 321 (1995), 529-541.doi: 10.1007/s00220-012-1610-0.

  • 加载中

Article Metrics

HTML views() PDF downloads(224) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint