August  2016, 36(8): 4495-4516. doi: 10.3934/dcds.2016.36.4495

Global well-posedness of strong solutions to a tropical climate model

1. 

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

2. 

Department of Mathematics, Texas A&M University, 3368-TAMU, College Station, TX 77843-3368, United States

Received  April 2015 Revised  October 2015 Published  March 2016

In this paper, we consider the Cauchy problem to the TROPICAL CLIMATE MODEL derived by Frierson--Majda--Pauluis in [15], which is a coupled system of the barotropic and baroclinic modes of the velocity and the typical midtropospheric temperature. The system considered in this paper has viscosities in the momentum equations, but no diffusivity in the temperature equation. We establish here the global well-posedness of strong solutions to this model. In proving the global existence of strong solutions, to overcome the difficulty caused by the absence of the diffusivity in the temperature equation, we introduce a new velocity $w$ (called the pseudo baroclinic velocity), which has more regularities than the original baroclinic mode of the velocity. An auxiliary function $\phi$, which looks like the effective viscous flux for the compressible Navier-Stokes equations, is also introduced to obtain the $L^\infty$ bound of the temperature. Regarding the uniqueness, we use the idea of performing suitable energy estimates at level one order lower than the natural basic energy estimates for the system.
Citation: Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495
References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[2]

H. Brézis and S. Wainger, A Note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[4]

C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity,, Arch. Rational Mech. Anal., 214 (2014), 35.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[5]

C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity,, J. Differential Equations, 257 (2014), 4108.  doi: 10.1016/j.jde.2014.08.003.  Google Scholar

[6]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity,, Comm. Pure Appl. Math., ().  doi: 10.1002/cpa.21576.  Google Scholar

[7]

C. Cao, J. Li and E. S. Titi, Strong solutions to the 3D primitive equations with horizontal dissipation: near $H^1$ initial data,, preprint., ().   Google Scholar

[8]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with horizontal viscosities and vertical diffusion,, preprint., ().   Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[10]

C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion,, Comm. Math. Phys., 310 (2012), 537.  doi: 10.1007/s00220-011-1409-4.  Google Scholar

[11]

R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, Ann. of Math., 103 (1976), 611.  doi: 10.2307/1970954.  Google Scholar

[12]

R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals,, Trans. Amer. Math. Soc., 212 (1975), 315.  doi: 10.1090/S0002-9947-1975-0380244-8.  Google Scholar

[13]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[14]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,, Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[15]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[16]

A. E. Gill, Some simple solutions for heat-induced tropical circulation,, Quart. J. Roy. Meteor. Soc., 106 (1980), 447.  doi: 10.1002/qj.49710644905.  Google Scholar

[17]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[18]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three,, C. R. Math. Acad. Sci. Paris, 345 (2007), 257.  doi: 10.1016/j.crma.2007.07.025.  Google Scholar

[19]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[20]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion,, J. Differential Equations, 255 (2013), 2636.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[21]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 220 (2016), 983.  doi: 10.1007/s00205-015-0946-y.  Google Scholar

[22]

J. Li, E. S. Titi and Z. Xin, On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbb R^2$,, Math. Models Methods Appl. Sci., 26 (2016), 803.  doi: 10.1142/S0218202516500184.  Google Scholar

[23]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAO III),, J. Math. Pures Appl., 74 (1995), 105.   Google Scholar

[26]

A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves,, J. Atmos. Sci., 60 (2003), 1809.  doi: 10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.  Google Scholar

[27]

T. Matsuno, Quasi-geostrophic motions in the equatorial area,, J. Meteor. Soc. Japan, 44 (1966), 25.   Google Scholar

[28]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119.  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

show all references

References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677.  doi: 10.1016/0362-546X(80)90068-1.  Google Scholar

[2]

H. Brézis and S. Wainger, A Note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773.  doi: 10.1080/03605308008820154.  Google Scholar

[3]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473.  doi: 10.1007/s00220-015-2365-1.  Google Scholar

[4]

C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity,, Arch. Rational Mech. Anal., 214 (2014), 35.  doi: 10.1007/s00205-014-0752-y.  Google Scholar

[5]

C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity,, J. Differential Equations, 257 (2014), 4108.  doi: 10.1016/j.jde.2014.08.003.  Google Scholar

[6]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity,, Comm. Pure Appl. Math., ().  doi: 10.1002/cpa.21576.  Google Scholar

[7]

C. Cao, J. Li and E. S. Titi, Strong solutions to the 3D primitive equations with horizontal dissipation: near $H^1$ initial data,, preprint., ().   Google Scholar

[8]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with horizontal viscosities and vertical diffusion,, preprint., ().   Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245.  doi: 10.4007/annals.2007.166.245.  Google Scholar

[10]

C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion,, Comm. Math. Phys., 310 (2012), 537.  doi: 10.1007/s00220-011-1409-4.  Google Scholar

[11]

R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, Ann. of Math., 103 (1976), 611.  doi: 10.2307/1970954.  Google Scholar

[12]

R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals,, Trans. Amer. Math. Soc., 212 (1975), 315.  doi: 10.1090/S0002-9947-1975-0380244-8.  Google Scholar

[13]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[14]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,, Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[15]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591.  doi: 10.4310/CMS.2004.v2.n4.a3.  Google Scholar

[16]

A. E. Gill, Some simple solutions for heat-induced tropical circulation,, Quart. J. Roy. Meteor. Soc., 106 (1980), 447.  doi: 10.1002/qj.49710644905.  Google Scholar

[17]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283.  doi: 10.1016/j.crma.2006.04.020.  Google Scholar

[18]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three,, C. R. Math. Acad. Sci. Paris, 345 (2007), 257.  doi: 10.1016/j.crma.2007.07.025.  Google Scholar

[19]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739.  doi: 10.1088/0951-7715/20/12/001.  Google Scholar

[20]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion,, J. Differential Equations, 255 (2013), 2636.  doi: 10.1016/j.jde.2013.07.011.  Google Scholar

[21]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 220 (2016), 983.  doi: 10.1007/s00205-015-0946-y.  Google Scholar

[22]

J. Li, E. S. Titi and Z. Xin, On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbb R^2$,, Math. Models Methods Appl. Sci., 26 (2016), 803.  doi: 10.1142/S0218202516500184.  Google Scholar

[23]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237.  doi: 10.1088/0951-7715/5/2/001.  Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007.  doi: 10.1088/0951-7715/5/5/002.  Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAO III),, J. Math. Pures Appl., 74 (1995), 105.   Google Scholar

[26]

A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves,, J. Atmos. Sci., 60 (2003), 1809.  doi: 10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2.  Google Scholar

[27]

T. Matsuno, Quasi-geostrophic motions in the equatorial area,, J. Meteor. Soc. Japan, 44 (1966), 25.   Google Scholar

[28]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119.  doi: 10.1090/S0002-9939-2014-12243-X.  Google Scholar

[1]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[2]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[7]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[8]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[9]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[10]

Yi Guan, Michal Fečkan, Jinrong Wang. Periodic solutions and Hyers-Ulam stability of atmospheric Ekman flows. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1157-1176. doi: 10.3934/dcds.2020313

[11]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[12]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[13]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[14]

Hui Zhao, Zhengrong Liu, Yiren Chen. Global dynamics of a chemotaxis model with signal-dependent diffusion and sensitivity. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021011

[15]

Shujing Shi, Jicai Huang, Yang Kuang. Global dynamics in a tumor-immune model with an immune checkpoint inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1149-1170. doi: 10.3934/dcdsb.2020157

[16]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[19]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[20]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (101)
  • HTML views (0)
  • Cited by (25)

Other articles
by authors

[Back to Top]