August  2016, 36(8): 4495-4516. doi: 10.3934/dcds.2016.36.4495

Global well-posedness of strong solutions to a tropical climate model

1. 

Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel

2. 

Department of Mathematics, Texas A&M University, 3368-TAMU, College Station, TX 77843-3368, United States

Received  April 2015 Revised  October 2015 Published  March 2016

In this paper, we consider the Cauchy problem to the TROPICAL CLIMATE MODEL derived by Frierson--Majda--Pauluis in [15], which is a coupled system of the barotropic and baroclinic modes of the velocity and the typical midtropospheric temperature. The system considered in this paper has viscosities in the momentum equations, but no diffusivity in the temperature equation. We establish here the global well-posedness of strong solutions to this model. In proving the global existence of strong solutions, to overcome the difficulty caused by the absence of the diffusivity in the temperature equation, we introduce a new velocity $w$ (called the pseudo baroclinic velocity), which has more regularities than the original baroclinic mode of the velocity. An auxiliary function $\phi$, which looks like the effective viscous flux for the compressible Navier-Stokes equations, is also introduced to obtain the $L^\infty$ bound of the temperature. Regarding the uniqueness, we use the idea of performing suitable energy estimates at level one order lower than the natural basic energy estimates for the system.
Citation: Jinkai Li, Edriss Titi. Global well-posedness of strong solutions to a tropical climate model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4495-4516. doi: 10.3934/dcds.2016.36.4495
References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

H. Brézis and S. Wainger, A Note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773. doi: 10.1080/03605308008820154. Google Scholar

[3]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473. doi: 10.1007/s00220-015-2365-1. Google Scholar

[4]

C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity,, Arch. Rational Mech. Anal., 214 (2014), 35. doi: 10.1007/s00205-014-0752-y. Google Scholar

[5]

C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity,, J. Differential Equations, 257 (2014), 4108. doi: 10.1016/j.jde.2014.08.003. Google Scholar

[6]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity,, Comm. Pure Appl. Math., (). doi: 10.1002/cpa.21576. Google Scholar

[7]

C. Cao, J. Li and E. S. Titi, Strong solutions to the 3D primitive equations with horizontal dissipation: near $H^1$ initial data,, preprint., (). Google Scholar

[8]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with horizontal viscosities and vertical diffusion,, preprint., (). Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[10]

C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion,, Comm. Math. Phys., 310 (2012), 537. doi: 10.1007/s00220-011-1409-4. Google Scholar

[11]

R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, Ann. of Math., 103 (1976), 611. doi: 10.2307/1970954. Google Scholar

[12]

R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals,, Trans. Amer. Math. Soc., 212 (1975), 315. doi: 10.1090/S0002-9947-1975-0380244-8. Google Scholar

[13]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010). doi: 10.1090/gsm/019. Google Scholar

[14]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,, Advances in Mathematical Fluid Mechanics, (2009). doi: 10.1007/978-3-7643-8843-0. Google Scholar

[15]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591. doi: 10.4310/CMS.2004.v2.n4.a3. Google Scholar

[16]

A. E. Gill, Some simple solutions for heat-induced tropical circulation,, Quart. J. Roy. Meteor. Soc., 106 (1980), 447. doi: 10.1002/qj.49710644905. Google Scholar

[17]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283. doi: 10.1016/j.crma.2006.04.020. Google Scholar

[18]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three,, C. R. Math. Acad. Sci. Paris, 345 (2007), 257. doi: 10.1016/j.crma.2007.07.025. Google Scholar

[19]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[20]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion,, J. Differential Equations, 255 (2013), 2636. doi: 10.1016/j.jde.2013.07.011. Google Scholar

[21]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 220 (2016), 983. doi: 10.1007/s00205-015-0946-y. Google Scholar

[22]

J. Li, E. S. Titi and Z. Xin, On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbb R^2$,, Math. Models Methods Appl. Sci., 26 (2016), 803. doi: 10.1142/S0218202516500184. Google Scholar

[23]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237. doi: 10.1088/0951-7715/5/2/001. Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007. doi: 10.1088/0951-7715/5/5/002. Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAO III),, J. Math. Pures Appl., 74 (1995), 105. Google Scholar

[26]

A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves,, J. Atmos. Sci., 60 (2003), 1809. doi: 10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2. Google Scholar

[27]

T. Matsuno, Quasi-geostrophic motions in the equatorial area,, J. Meteor. Soc. Japan, 44 (1966), 25. Google Scholar

[28]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119. doi: 10.1090/S0002-9939-2014-12243-X. Google Scholar

show all references

References:
[1]

H. Brézis and T. Gallouet, Nonlinear Schrödinger evolution equations,, Nonlinear Anal., 4 (1980), 677. doi: 10.1016/0362-546X(80)90068-1. Google Scholar

[2]

H. Brézis and S. Wainger, A Note on limiting cases of Sobolev embeddings and convolution inequalities,, Comm. Partial Differential Equations, 5 (1980), 773. doi: 10.1080/03605308008820154. Google Scholar

[3]

C. Cao, S. Ibrahim, K. Nakanishi and E. S. Titi, Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics,, Comm. Math. Phys., 337 (2015), 473. doi: 10.1007/s00220-015-2365-1. Google Scholar

[4]

C. Cao, J. Li and E. S. Titi, Local and global well-posedness of strong solutions to the 3D primitive equations with vertical eddy diffusivity,, Arch. Rational Mech. Anal., 214 (2014), 35. doi: 10.1007/s00205-014-0752-y. Google Scholar

[5]

C. Cao, J. Li and E. S. Titi, Global well-posedness of strong solutions to the 3D primitive equations with horizontal eddy diffusivity,, J. Differential Equations, 257 (2014), 4108. doi: 10.1016/j.jde.2014.08.003. Google Scholar

[6]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with only horizontal viscosity and diffusivity,, Comm. Pure Appl. Math., (). doi: 10.1002/cpa.21576. Google Scholar

[7]

C. Cao, J. Li and E. S. Titi, Strong solutions to the 3D primitive equations with horizontal dissipation: near $H^1$ initial data,, preprint., (). Google Scholar

[8]

C. Cao, J. Li and E. S. Titi, Global well-posedness of the 3D primitive equations with horizontal viscosities and vertical diffusion,, preprint., (). Google Scholar

[9]

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics,, Ann. of Math., 166 (2007), 245. doi: 10.4007/annals.2007.166.245. Google Scholar

[10]

C. Cao and E. S. Titi, Global well-posedness of the 3D primitive equations with partial vertical turbulence mixing heat diffusion,, Comm. Math. Phys., 310 (2012), 537. doi: 10.1007/s00220-011-1409-4. Google Scholar

[11]

R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables,, Ann. of Math., 103 (1976), 611. doi: 10.2307/1970954. Google Scholar

[12]

R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear singular integrals,, Trans. Amer. Math. Soc., 212 (1975), 315. doi: 10.1090/S0002-9947-1975-0380244-8. Google Scholar

[13]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010). doi: 10.1090/gsm/019. Google Scholar

[14]

E. Feireisl and A. Novotný, Singular Limits in Thermodynamics of Viscous Fluids,, Advances in Mathematical Fluid Mechanics, (2009). doi: 10.1007/978-3-7643-8843-0. Google Scholar

[15]

D. M. W. Frierson, A. J. Majda and O. M. Pauluis, Large scale dynamics of precipitation fronts in the tropical atmosphere: a novel relaxation limit,, Commun. Math. Sci., 2 (2004), 591. doi: 10.4310/CMS.2004.v2.n4.a3. Google Scholar

[16]

A. E. Gill, Some simple solutions for heat-induced tropical circulation,, Quart. J. Roy. Meteor. Soc., 106 (1980), 447. doi: 10.1002/qj.49710644905. Google Scholar

[17]

G. M. Kobelkov, Existence of a solution in the large for the 3D large-scale ocean dynamics equations,, C. R. Math. Acad. Sci. Paris, 343 (2006), 283. doi: 10.1016/j.crma.2006.04.020. Google Scholar

[18]

I. Kukavica and M. Ziane, The regularity of solutions of the primitive equations of the ocean in space dimension three,, C. R. Math. Acad. Sci. Paris, 345 (2007), 257. doi: 10.1016/j.crma.2007.07.025. Google Scholar

[19]

I. Kukavica and M. Ziane, On the regularity of the primitive equations of the ocean,, Nonlinearity, 20 (2007), 2739. doi: 10.1088/0951-7715/20/12/001. Google Scholar

[20]

A. Larios, E. Lunasin and E. S. Titi, Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion,, J. Differential Equations, 255 (2013), 2636. doi: 10.1016/j.jde.2013.07.011. Google Scholar

[21]

J. Li and E. S. Titi, Global well-posedness of the 2D Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 220 (2016), 983. doi: 10.1007/s00205-015-0946-y. Google Scholar

[22]

J. Li, E. S. Titi and Z. Xin, On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in $\mathbb R^2$,, Math. Models Methods Appl. Sci., 26 (2016), 803. doi: 10.1142/S0218202516500184. Google Scholar

[23]

J. L. Lions, R. Temam and S. Wang, New formulations of the primitive equations of atmosphere and applications,, Nonlinearity, 5 (1992), 237. doi: 10.1088/0951-7715/5/2/001. Google Scholar

[24]

J. L. Lions, R. Temam and S. Wang, On the equations of the large-scale ocean,, Nonlinearity, 5 (1992), 1007. doi: 10.1088/0951-7715/5/5/002. Google Scholar

[25]

J. L. Lions, R. Temam and S. Wang, Mathematical theory for the coupled atmosphere-ocean models (CAO III),, J. Math. Pures Appl., 74 (1995), 105. Google Scholar

[26]

A. J. Majda and J. A. Biello, The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves,, J. Atmos. Sci., 60 (2003), 1809. doi: 10.1175/1520-0469(2003)060<1809:TNIOBA>2.0.CO;2. Google Scholar

[27]

T. Matsuno, Quasi-geostrophic motions in the equatorial area,, J. Meteor. Soc. Japan, 44 (1966), 25. Google Scholar

[28]

T. K. Wong, Blowup of solutions of the hydrostatic Euler equations,, Proc. Amer. Math. Soc., 143 (2015), 1119. doi: 10.1090/S0002-9939-2014-12243-X. Google Scholar

[1]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[2]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[3]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[4]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[5]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[6]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[7]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[8]

Peng Jiang. Global well-posedness and large time behavior of classical solutions to the diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 2045-2063. doi: 10.3934/dcds.2017087

[9]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[10]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[11]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[12]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[13]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[14]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[15]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D incompressible anisotropic magnetohydrodynamics equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5801-5815. doi: 10.3934/dcds.2016055

[16]

Hongjie Dong. Dissipative quasi-geostrophic equations in critical Sobolev spaces: Smoothing effect and global well-posedness. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1197-1211. doi: 10.3934/dcds.2010.26.1197

[17]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[18]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[19]

Shengquan Liu, Jianwen Zhang. Global well-posedness for the two-dimensional equations of nonhomogeneous incompressible liquid crystal flows with nonnegative density. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2631-2648. doi: 10.3934/dcdsb.2016065

[20]

Renhui Wan. Global well-posedness for the 2D Boussinesq equations with a velocity damping term. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2709-2730. doi: 10.3934/dcds.2019113

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (20)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]