-
Previous Article
A drift-diffusion model for molecular motor transport in anisotropic filament bundles
- DCDS Home
- This Issue
-
Next Article
On the Betti numbers of level sets of solutions to elliptic equations
Paradoxical waves and active mechanism in the cochlea
1. | Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States, United States |
References:
[1] |
R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145. Google Scholar |
[2] |
P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575. Google Scholar |
[3] |
E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.
doi: 10.1016/S0021-9991(03)00319-X. |
[4] |
A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.
doi: 10.1038/nrn3786. |
[5] |
E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).
|
[6] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.
doi: 10.1121/1.391735. |
[7] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.
doi: 10.1137/0145026. |
[8] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.
doi: 10.1137/0148009. |
[9] |
C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252. Google Scholar |
[10] |
C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38. Google Scholar |
[11] |
C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.
doi: 10.1017/S0962492902000077. |
[12] |
J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).
|
[13] |
G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960). Google Scholar |
show all references
References:
[1] |
R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145. Google Scholar |
[2] |
P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575. Google Scholar |
[3] |
E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.
doi: 10.1016/S0021-9991(03)00319-X. |
[4] |
A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.
doi: 10.1038/nrn3786. |
[5] |
E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).
|
[6] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.
doi: 10.1121/1.391735. |
[7] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.
doi: 10.1137/0145026. |
[8] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.
doi: 10.1137/0148009. |
[9] |
C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252. Google Scholar |
[10] |
C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38. Google Scholar |
[11] |
C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.
doi: 10.1017/S0962492902000077. |
[12] |
J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).
|
[13] |
G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960). Google Scholar |
[1] |
Qiang Du, Manlin Li. On the stochastic immersed boundary method with an implicit interface formulation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 373-389. doi: 10.3934/dcdsb.2011.15.373 |
[2] |
Harvey A. R. Williams, Lisa J. Fauci, Donald P. Gaver III. Evaluation of interfacial fluid dynamical stresses using the immersed boundary method. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 519-540. doi: 10.3934/dcdsb.2009.11.519 |
[3] |
Robert H. Dillon, Jingxuan Zhuo. Using the immersed boundary method to model complex fluids-structure interaction in sperm motility. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 343-355. doi: 10.3934/dcdsb.2011.15.343 |
[4] |
Daniele Boffi, Lucia Gastaldi. Discrete models for fluid-structure interactions: The finite element Immersed Boundary Method. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 89-107. doi: 10.3934/dcdss.2016.9.89 |
[5] |
Shunfu Jin, Wuyi Yue, Chao Meng, Zsolt Saffer. A novel active DRX mechanism in LTE technology and its performance evaluation. Journal of Industrial & Management Optimization, 2015, 11 (3) : 849-866. doi: 10.3934/jimo.2015.11.849 |
[6] |
Giovanni Alessandrini, Elio Cabib. Determining the anisotropic traction state in a membrane by boundary measurements. Inverse Problems & Imaging, 2007, 1 (3) : 437-442. doi: 10.3934/ipi.2007.1.437 |
[7] |
Champike Attanayake, So-Hsiang Chou. An immersed interface method for Pennes bioheat transfer equation. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 323-337. doi: 10.3934/dcdsb.2015.20.323 |
[8] |
Jian Hao, Zhilin Li, Sharon R. Lubkin. An augmented immersed interface method for moving structures with mass. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1175-1184. doi: 10.3934/dcdsb.2012.17.1175 |
[9] |
Thomas Y. Hou, Pingwen Zhang. Convergence of a boundary integral method for 3-D water waves. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 1-34. doi: 10.3934/dcdsb.2002.2.1 |
[10] |
So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343 |
[11] |
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations & Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 |
[12] |
Sheng Xu. Derivation of principal jump conditions for the immersed interface method in two-fluid flow simulation. Conference Publications, 2009, 2009 (Special) : 838-845. doi: 10.3934/proc.2009.2009.838 |
[13] |
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577 |
[14] |
Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661 |
[15] |
Hayden Schaeffer. Active arcs and contours. Inverse Problems & Imaging, 2014, 8 (3) : 845-863. doi: 10.3934/ipi.2014.8.845 |
[16] |
Mauro Maggioni, James M. Murphy. Learning by active nonlinear diffusion. Foundations of Data Science, 2019, 1 (3) : 271-291. doi: 10.3934/fods.2019012 |
[17] |
André Nachbin, Roberto Ribeiro-Junior. A boundary integral formulation for particle trajectories in Stokes waves. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3135-3153. doi: 10.3934/dcds.2014.34.3135 |
[18] |
Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23 |
[19] |
Hisashi Nishiyama. Boundary stabilization of the waves in partially rectangular domains. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1583-1601. doi: 10.3934/dcds.2013.33.1583 |
[20] |
David Aleja, Julián López-Gómez. Some paradoxical effects of the advection on a class of diffusive equations in Ecology. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3031-3056. doi: 10.3934/dcdsb.2014.19.3031 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]