August  2016, 36(8): 4531-4552. doi: 10.3934/dcds.2016.36.4531

Paradoxical waves and active mechanism in the cochlea

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States, United States

Received  May 2015 Revised  January 2016 Published  March 2016

This paper is dedicated to Peter Lax. We recall happily Lax's interest in the cochlea (and in all things biomedical), culminating in his magical solution of one version of the cochlea problem, as detailed herein. The cochlea is a remarkable organ (more remarkable the more we learn about it) that separates sounds into their frequency components. Two features of the cochlea are the focus of this work. One is the extreme insensitivity of the wave motion that occurs in the cochlea to the manner in which the cochlea is stimulated, so much so that even the direction of wave propagation is independent of the location of the source of the incident sound. The other is that the cochlea is an active system, a distributed amplifier that pumps energy into the cochlear wave as it propagates. Remarkably, this amplification not only boosts the signal but also improves the frequency resolution of the cochlea. The active mechanism is modeled here by a negative damping term in the equations of motion, and the whole system is stable as a result of fluid viscosity despite the negative damping.
Citation: Mohammad T. Manzari, Charles S. Peskin. Paradoxical waves and active mechanism in the cochlea. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4531-4552. doi: 10.3934/dcds.2016.36.4531
References:
[1]

R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145.   Google Scholar

[2]

P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575.   Google Scholar

[3]

E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.  doi: 10.1016/S0021-9991(03)00319-X.  Google Scholar

[4]

A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.  doi: 10.1038/nrn3786.  Google Scholar

[5]

E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).   Google Scholar

[6]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.  doi: 10.1121/1.391735.  Google Scholar

[7]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.  doi: 10.1137/0145026.  Google Scholar

[8]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.  doi: 10.1137/0148009.  Google Scholar

[9]

C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252.   Google Scholar

[10]

C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38.   Google Scholar

[11]

C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.  doi: 10.1017/S0962492902000077.  Google Scholar

[12]

J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).   Google Scholar

[13]

G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960).   Google Scholar

show all references

References:
[1]

R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145.   Google Scholar

[2]

P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575.   Google Scholar

[3]

E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.  doi: 10.1016/S0021-9991(03)00319-X.  Google Scholar

[4]

A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.  doi: 10.1038/nrn3786.  Google Scholar

[5]

E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).   Google Scholar

[6]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.  doi: 10.1121/1.391735.  Google Scholar

[7]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.  doi: 10.1137/0145026.  Google Scholar

[8]

R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.  doi: 10.1137/0148009.  Google Scholar

[9]

C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252.   Google Scholar

[10]

C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38.   Google Scholar

[11]

C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.  doi: 10.1017/S0962492902000077.  Google Scholar

[12]

J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).   Google Scholar

[13]

G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960).   Google Scholar

[1]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[2]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[3]

Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020175

[4]

Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020364

[5]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[6]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020180

[11]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[14]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[15]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021008

[16]

Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095

[17]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[18]

Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315

[19]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[20]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]