-
Previous Article
A drift-diffusion model for molecular motor transport in anisotropic filament bundles
- DCDS Home
- This Issue
-
Next Article
On the Betti numbers of level sets of solutions to elliptic equations
Paradoxical waves and active mechanism in the cochlea
1. | Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States, United States |
References:
[1] |
R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145. Google Scholar |
[2] |
P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575. Google Scholar |
[3] |
E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.
doi: 10.1016/S0021-9991(03)00319-X. |
[4] |
A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.
doi: 10.1038/nrn3786. |
[5] |
E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).
|
[6] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.
doi: 10.1121/1.391735. |
[7] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.
doi: 10.1137/0145026. |
[8] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.
doi: 10.1137/0148009. |
[9] |
C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252. Google Scholar |
[10] |
C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38. Google Scholar |
[11] |
C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.
doi: 10.1017/S0962492902000077. |
[12] |
J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).
|
[13] |
G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960). Google Scholar |
show all references
References:
[1] |
R. P. Beyer, A computational model of the cochlea using the immersed boundary method,, J. Computational Physics, 98 (1992), 145. Google Scholar |
[2] |
P. J. Dallos, The active cochlea,, J. Neuroscience, 12 (1992), 4575. Google Scholar |
[3] |
E. Givelberg and J. Bunn, A comprehensive three-dimensional model of the cochlea,, J. Computational Physics, 191 (2003), 377.
doi: 10.1016/S0021-9991(03)00319-X. |
[4] |
A. J. Hudspeth, Integrating the active process of hair cells with cochlear function,, Nature Reviews Neuroscience, 15 (2014), 600.
doi: 10.1038/nrn3786. |
[5] |
E. Isaacson, A Numerical Method for a Finite-Depth, Two-Dimensional Model of the Inner Ear,, Ph.D thesis, (1979).
|
[6] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Asymptotic analysis of a viscous cochlear model,, J. Acoustical Society of America, 77 (1985), 2107.
doi: 10.1121/1.391735. |
[7] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model using transform techniques,, SIAM J. Appl. Math., 45 (1985), 450.
doi: 10.1137/0145026. |
[8] |
R. J. LeVeque, C. S. Peskin and P. D. Lax, Solution of a two-dimensional cochlea model with fluid viscosity,, SIAM J. Appl. Math., 48 (1988), 191.
doi: 10.1137/0148009. |
[9] |
C. S. Peskin, Flow patterns around heart valves: A numerical method,, J. Computational Physics, 10 (1972), 252. Google Scholar |
[10] |
C. S. Peskin, Lectures on Mathematical Aspects of Physiology (II) The Inner Ear,, in Mathematical Aspects of Physiology (eds. F.C. Hoppensteadt), (1981), 38. Google Scholar |
[11] |
C. S. Peskin, The immersed boundary method,, Acta Numerica, 11 (2002), 479.
doi: 10.1017/S0962492902000077. |
[12] |
J. J. Stoker, Water Waves,, Interscience Publishers Inc, (1957).
|
[13] |
G. von Bekesy, Experiments in Hearing,, Robert E. Krieger Publishing Company, (1960). Google Scholar |
[1] |
Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349 |
[2] |
Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021003 |
[3] |
Wei Chen, Yongkai Ma, Weihao Hu. Electricity supply chain coordination with carbon abatement technology investment under the benchmarking mechanism. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020175 |
[4] |
Wei-Chieh Chen, Bogdan Kazmierczak. Traveling waves in quadratic autocatalytic systems with complexing agent. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020364 |
[5] |
Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020323 |
[6] |
Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256 |
[7] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[8] |
Ting Liu, Guo-Bao Zhang. Global stability of traveling waves for a spatially discrete diffusion system with time delay. Electronic Research Archive, , () : -. doi: 10.3934/era.2021003 |
[9] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[10] |
Xiaoxiao Li, Yingjing Shi, Rui Li, Shida Cao. Energy management method for an unpowered landing. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020180 |
[11] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[12] |
Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020466 |
[13] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[14] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[15] |
Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021008 |
[16] |
Ying Liu, Yanping Chen, Yunqing Huang, Yang Wang. Two-grid method for semiconductor device problem by mixed finite element method and characteristics finite element method. Electronic Research Archive, 2021, 29 (1) : 1859-1880. doi: 10.3934/era.2020095 |
[17] |
Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048 |
[18] |
Chang-Yeol Jung, Roger Temam. Interaction of boundary layers and corner singularities. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 315-339. doi: 10.3934/dcds.2009.23.315 |
[19] |
Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019 |
[20] |
Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]