-
Previous Article
The relative entropy method for the stability of intermediate shock waves; the rich case
- DCDS Home
- This Issue
-
Next Article
Paradoxical waves and active mechanism in the cochlea
A drift-diffusion model for molecular motor transport in anisotropic filament bundles
1. | Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, United States |
2. | Courant Institute of Mathematical Sciences and Department of Biology, New York University, 251 Mercer St, New York, NY 10012, United States |
References:
[1] |
P. Baas, C. Nadar and K. Myers, Axonal transport of microtubules: The long and short of it,, Traffic, 7 (2006), 490.
doi: 10.1111/j.1600-0854.2006.00392.x. |
[2] |
P. Bressloff and J. Newby, Stochastic models of intracellular transport,, Reviews of Modern Physics, 85 (2013), 135.
doi: 10.1103/RevModPhys.85.135. |
[3] |
A. Friedman and G. Craciun, A model of intracellular transport of particles in an axon,, Journal of Mathematical Biology, 51 (2005), 217.
doi: 10.1007/s00285-004-0285-3. |
[4] |
K. O. Friedrichs and P. D. Lax, Boundary value problems for first order operators,, Communications on Pure and Applied Mathematics, 18 (1965), 355.
doi: 10.1002/cpa.3160180127. |
[5] |
W. Hancock, Bidirectional cargo transport: Moving beyond tug of war,, Nature Reviews Molecular Cell Biology, 15 (2014), 615.
doi: 10.1038/nrm3853. |
[6] |
T. Hillen and H. Othmer, The diffusion limit of transport equations derived from velocity-jump processes,, SIAM Journal on Applied Mathematics, 61 (2000), 751.
doi: 10.1137/S0036139999358167. |
[7] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
M. Kneussel and W. Wagner, Myosin motors at neuronal synapses: Drivers of membrane transport and actin dynamics,, Nature Reviews Neuroscience, 14 (2013), 233.
doi: 10.1038/nrn3445. |
[9] |
A. Kunwar, S. Tripathy, J. Xu, M. Mattson, P. Anand, R. Sigua, M. Vershinin, R. McKenney, C. Yu, A. Mogilner and S. Gross, Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport,, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011), 18960.
doi: 10.1073/pnas.1107841108. |
[10] |
A. Kuznetsov, Modelling active transport in drosophila unipolar motor neurons,, Computer Methods in Biomechanics and Biomedical Engineering, 14 (2011), 1117.
doi: 10.1080/10255842.2010.515983. |
[11] |
A. Kuznetsov and K. Hooman, Modeling traffic jams in intracellular transport in axons,, International Journal of Heat and Mass Transfer, 51 (2008), 5695.
doi: 10.1016/j.ijheatmasstransfer.2008.04.022. |
[12] |
I. Maly, Diffusion approximation of the stochastic process of microtubule assembly,, Bulletin of Mathematical Biology, 64 (2002), 213.
doi: 10.1006/bulm.2001.0265. |
[13] |
D. Smith and R. Simmons, Models of motor-assisted transport of intracellular particles,, Biophysical Journal, 80 (2001), 45.
doi: 10.1016/S0006-3495(01)75994-2. |
[14] |
M. Stone, F. Roegiers and M. Rolls, Microtubules have opposite orientation in axons and dendrites of drosophila neurons,, Molecular Biology of the Cell, 19 (2008), 4122.
doi: 10.1091/mbc.E07-10-1079. |
[15] |
R. Vale, The molecular motor toolbox for intracellular transport,, Cell, 112 (2003), 467.
doi: 10.1016/S0092-8674(03)00111-9. |
[16] |
W. J. Walter, V. Beránek, E. Fischermeier and S. Diez, Tubulin acetylation alone does not affect kinesin-1 velocity and run length |
[17] |
F. Wanka and E. Van Zoelen, Cellular organelle transport and positioning by plasma streaming,, Cellular and Molecular Biology Letters, 8 (2003), 1035. Google Scholar |
show all references
References:
[1] |
P. Baas, C. Nadar and K. Myers, Axonal transport of microtubules: The long and short of it,, Traffic, 7 (2006), 490.
doi: 10.1111/j.1600-0854.2006.00392.x. |
[2] |
P. Bressloff and J. Newby, Stochastic models of intracellular transport,, Reviews of Modern Physics, 85 (2013), 135.
doi: 10.1103/RevModPhys.85.135. |
[3] |
A. Friedman and G. Craciun, A model of intracellular transport of particles in an axon,, Journal of Mathematical Biology, 51 (2005), 217.
doi: 10.1007/s00285-004-0285-3. |
[4] |
K. O. Friedrichs and P. D. Lax, Boundary value problems for first order operators,, Communications on Pure and Applied Mathematics, 18 (1965), 355.
doi: 10.1002/cpa.3160180127. |
[5] |
W. Hancock, Bidirectional cargo transport: Moving beyond tug of war,, Nature Reviews Molecular Cell Biology, 15 (2014), 615.
doi: 10.1038/nrm3853. |
[6] |
T. Hillen and H. Othmer, The diffusion limit of transport equations derived from velocity-jump processes,, SIAM Journal on Applied Mathematics, 61 (2000), 751.
doi: 10.1137/S0036139999358167. |
[7] |
E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.
doi: 10.1016/0022-5193(70)90092-5. |
[8] |
M. Kneussel and W. Wagner, Myosin motors at neuronal synapses: Drivers of membrane transport and actin dynamics,, Nature Reviews Neuroscience, 14 (2013), 233.
doi: 10.1038/nrn3445. |
[9] |
A. Kunwar, S. Tripathy, J. Xu, M. Mattson, P. Anand, R. Sigua, M. Vershinin, R. McKenney, C. Yu, A. Mogilner and S. Gross, Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport,, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011), 18960.
doi: 10.1073/pnas.1107841108. |
[10] |
A. Kuznetsov, Modelling active transport in drosophila unipolar motor neurons,, Computer Methods in Biomechanics and Biomedical Engineering, 14 (2011), 1117.
doi: 10.1080/10255842.2010.515983. |
[11] |
A. Kuznetsov and K. Hooman, Modeling traffic jams in intracellular transport in axons,, International Journal of Heat and Mass Transfer, 51 (2008), 5695.
doi: 10.1016/j.ijheatmasstransfer.2008.04.022. |
[12] |
I. Maly, Diffusion approximation of the stochastic process of microtubule assembly,, Bulletin of Mathematical Biology, 64 (2002), 213.
doi: 10.1006/bulm.2001.0265. |
[13] |
D. Smith and R. Simmons, Models of motor-assisted transport of intracellular particles,, Biophysical Journal, 80 (2001), 45.
doi: 10.1016/S0006-3495(01)75994-2. |
[14] |
M. Stone, F. Roegiers and M. Rolls, Microtubules have opposite orientation in axons and dendrites of drosophila neurons,, Molecular Biology of the Cell, 19 (2008), 4122.
doi: 10.1091/mbc.E07-10-1079. |
[15] |
R. Vale, The molecular motor toolbox for intracellular transport,, Cell, 112 (2003), 467.
doi: 10.1016/S0092-8674(03)00111-9. |
[16] |
W. J. Walter, V. Beránek, E. Fischermeier and S. Diez, Tubulin acetylation alone does not affect kinesin-1 velocity and run length |
[17] |
F. Wanka and E. Van Zoelen, Cellular organelle transport and positioning by plasma streaming,, Cellular and Molecular Biology Letters, 8 (2003), 1035. Google Scholar |
[1] |
Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160 |
[2] |
Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281 |
[3] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[4] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001 |
[5] |
Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031 |
[6] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[7] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020441 |
[8] |
H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020433 |
[9] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[10] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[11] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020457 |
[12] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[13] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[14] |
Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031 |
[15] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[16] |
Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219 |
[17] |
Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331 |
[18] |
Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226 |
[19] |
Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279 |
[20] |
Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020344 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]