August  2016, 36(8): 4553-4567. doi: 10.3934/dcds.2016.36.4553

A drift-diffusion model for molecular motor transport in anisotropic filament bundles

1. 

Courant Institute of Mathematical Sciences, New York University, 251 Mercer St, New York, NY 10012, United States

2. 

Courant Institute of Mathematical Sciences and Department of Biology, New York University, 251 Mercer St, New York, NY 10012, United States

Received  May 2015 Revised  October 2015 Published  March 2016

In this study we consider the density of motor proteins in filament bundles with polarity graded in space. We start with a microscopic model that includes information on motor binding site positions along specific filaments and on their polarities. We assume that filament length is small compared to the characteristic length scale of the bundle polarity pattern. This leads to a separation of scales between molecular motor movement within the bundle and along single fibers which we exploit to derive a drift-diffusion equation as a first order perturbation equation. The resulting drift-diffusion model reveals that drift dominates in unidirectional bundles while diffusion dominates in isotropic bundles. In general, however, those two modes of transport are balanced according to the polarity and thickness of the filament bundle. The model makes testable predictions on the dependence of the molecular motor density on filament density and polarity.
Citation: Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553
References:
[1]

P. Baas, C. Nadar and K. Myers, Axonal transport of microtubules: The long and short of it,, Traffic, 7 (2006), 490.  doi: 10.1111/j.1600-0854.2006.00392.x.  Google Scholar

[2]

P. Bressloff and J. Newby, Stochastic models of intracellular transport,, Reviews of Modern Physics, 85 (2013), 135.  doi: 10.1103/RevModPhys.85.135.  Google Scholar

[3]

A. Friedman and G. Craciun, A model of intracellular transport of particles in an axon,, Journal of Mathematical Biology, 51 (2005), 217.  doi: 10.1007/s00285-004-0285-3.  Google Scholar

[4]

K. O. Friedrichs and P. D. Lax, Boundary value problems for first order operators,, Communications on Pure and Applied Mathematics, 18 (1965), 355.  doi: 10.1002/cpa.3160180127.  Google Scholar

[5]

W. Hancock, Bidirectional cargo transport: Moving beyond tug of war,, Nature Reviews Molecular Cell Biology, 15 (2014), 615.  doi: 10.1038/nrm3853.  Google Scholar

[6]

T. Hillen and H. Othmer, The diffusion limit of transport equations derived from velocity-jump processes,, SIAM Journal on Applied Mathematics, 61 (2000), 751.  doi: 10.1137/S0036139999358167.  Google Scholar

[7]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[8]

M. Kneussel and W. Wagner, Myosin motors at neuronal synapses: Drivers of membrane transport and actin dynamics,, Nature Reviews Neuroscience, 14 (2013), 233.  doi: 10.1038/nrn3445.  Google Scholar

[9]

A. Kunwar, S. Tripathy, J. Xu, M. Mattson, P. Anand, R. Sigua, M. Vershinin, R. McKenney, C. Yu, A. Mogilner and S. Gross, Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport,, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011), 18960.  doi: 10.1073/pnas.1107841108.  Google Scholar

[10]

A. Kuznetsov, Modelling active transport in drosophila unipolar motor neurons,, Computer Methods in Biomechanics and Biomedical Engineering, 14 (2011), 1117.  doi: 10.1080/10255842.2010.515983.  Google Scholar

[11]

A. Kuznetsov and K. Hooman, Modeling traffic jams in intracellular transport in axons,, International Journal of Heat and Mass Transfer, 51 (2008), 5695.  doi: 10.1016/j.ijheatmasstransfer.2008.04.022.  Google Scholar

[12]

I. Maly, Diffusion approximation of the stochastic process of microtubule assembly,, Bulletin of Mathematical Biology, 64 (2002), 213.  doi: 10.1006/bulm.2001.0265.  Google Scholar

[13]

D. Smith and R. Simmons, Models of motor-assisted transport of intracellular particles,, Biophysical Journal, 80 (2001), 45.  doi: 10.1016/S0006-3495(01)75994-2.  Google Scholar

[14]

M. Stone, F. Roegiers and M. Rolls, Microtubules have opposite orientation in axons and dendrites of drosophila neurons,, Molecular Biology of the Cell, 19 (2008), 4122.  doi: 10.1091/mbc.E07-10-1079.  Google Scholar

[15]

R. Vale, The molecular motor toolbox for intracellular transport,, Cell, 112 (2003), 467.  doi: 10.1016/S0092-8674(03)00111-9.  Google Scholar

[16]

W. J. Walter, V. Beránek, E. Fischermeier and S. Diez, Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro,, PLoS ONE, 7 (2012).   Google Scholar

[17]

F. Wanka and E. Van Zoelen, Cellular organelle transport and positioning by plasma streaming,, Cellular and Molecular Biology Letters, 8 (2003), 1035.   Google Scholar

show all references

References:
[1]

P. Baas, C. Nadar and K. Myers, Axonal transport of microtubules: The long and short of it,, Traffic, 7 (2006), 490.  doi: 10.1111/j.1600-0854.2006.00392.x.  Google Scholar

[2]

P. Bressloff and J. Newby, Stochastic models of intracellular transport,, Reviews of Modern Physics, 85 (2013), 135.  doi: 10.1103/RevModPhys.85.135.  Google Scholar

[3]

A. Friedman and G. Craciun, A model of intracellular transport of particles in an axon,, Journal of Mathematical Biology, 51 (2005), 217.  doi: 10.1007/s00285-004-0285-3.  Google Scholar

[4]

K. O. Friedrichs and P. D. Lax, Boundary value problems for first order operators,, Communications on Pure and Applied Mathematics, 18 (1965), 355.  doi: 10.1002/cpa.3160180127.  Google Scholar

[5]

W. Hancock, Bidirectional cargo transport: Moving beyond tug of war,, Nature Reviews Molecular Cell Biology, 15 (2014), 615.  doi: 10.1038/nrm3853.  Google Scholar

[6]

T. Hillen and H. Othmer, The diffusion limit of transport equations derived from velocity-jump processes,, SIAM Journal on Applied Mathematics, 61 (2000), 751.  doi: 10.1137/S0036139999358167.  Google Scholar

[7]

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[8]

M. Kneussel and W. Wagner, Myosin motors at neuronal synapses: Drivers of membrane transport and actin dynamics,, Nature Reviews Neuroscience, 14 (2013), 233.  doi: 10.1038/nrn3445.  Google Scholar

[9]

A. Kunwar, S. Tripathy, J. Xu, M. Mattson, P. Anand, R. Sigua, M. Vershinin, R. McKenney, C. Yu, A. Mogilner and S. Gross, Mechanical stochastic tug-of-war models cannot explain bidirectional lipid-droplet transport,, Proceedings of the National Academy of Sciences of the United States of America, 108 (2011), 18960.  doi: 10.1073/pnas.1107841108.  Google Scholar

[10]

A. Kuznetsov, Modelling active transport in drosophila unipolar motor neurons,, Computer Methods in Biomechanics and Biomedical Engineering, 14 (2011), 1117.  doi: 10.1080/10255842.2010.515983.  Google Scholar

[11]

A. Kuznetsov and K. Hooman, Modeling traffic jams in intracellular transport in axons,, International Journal of Heat and Mass Transfer, 51 (2008), 5695.  doi: 10.1016/j.ijheatmasstransfer.2008.04.022.  Google Scholar

[12]

I. Maly, Diffusion approximation of the stochastic process of microtubule assembly,, Bulletin of Mathematical Biology, 64 (2002), 213.  doi: 10.1006/bulm.2001.0265.  Google Scholar

[13]

D. Smith and R. Simmons, Models of motor-assisted transport of intracellular particles,, Biophysical Journal, 80 (2001), 45.  doi: 10.1016/S0006-3495(01)75994-2.  Google Scholar

[14]

M. Stone, F. Roegiers and M. Rolls, Microtubules have opposite orientation in axons and dendrites of drosophila neurons,, Molecular Biology of the Cell, 19 (2008), 4122.  doi: 10.1091/mbc.E07-10-1079.  Google Scholar

[15]

R. Vale, The molecular motor toolbox for intracellular transport,, Cell, 112 (2003), 467.  doi: 10.1016/S0092-8674(03)00111-9.  Google Scholar

[16]

W. J. Walter, V. Beránek, E. Fischermeier and S. Diez, Tubulin acetylation alone does not affect kinesin-1 velocity and run length in vitro,, PLoS ONE, 7 (2012).   Google Scholar

[17]

F. Wanka and E. Van Zoelen, Cellular organelle transport and positioning by plasma streaming,, Cellular and Molecular Biology Letters, 8 (2003), 1035.   Google Scholar

[1]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[2]

Thomas Y. Hou, Dong Liang. Multiscale analysis for convection dominated transport equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 281-298. doi: 10.3934/dcds.2009.23.281

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[5]

Simone Fiori. Error-based control systems on Riemannian state manifolds: Properties of the principal pushforward map associated to parallel transport. Mathematical Control & Related Fields, 2021, 11 (1) : 143-167. doi: 10.3934/mcrf.2020031

[6]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[7]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[10]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[11]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[12]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[13]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[14]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[15]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[16]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Matúš Tibenský, Angela Handlovičová. Convergence analysis of the discrete duality finite volume scheme for the regularised Heston model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1181-1195. doi: 10.3934/dcdss.2020226

[19]

Eduard Marušić-Paloka, Igor Pažanin. Homogenization and singular perturbation in porous media. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020279

[20]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]