• Previous Article
    Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws
  • DCDS Home
  • This Issue
  • Next Article
    A drift-diffusion model for molecular motor transport in anisotropic filament bundles
August  2016, 36(8): 4569-4577. doi: 10.3934/dcds.2016.36.4569

The relative entropy method for the stability of intermediate shock waves; the rich case

1. 

UMPA, ENS-Lyon 46, allée d'Italie 69364 LYON Cedex 07, France

2. 

Department of Mathematics, University of Texas at Austin, 1 University Station – C1200, Austin, TX 78712-0257, United States

Received  April 2015 Revised  August 2015 Published  March 2016

M.-J. Kang and one of us [2] developed a new version of the relative entropy method, which is efficient in the study of the long-time stability of extreme shocks. When a system of conservation laws is rich, we show that this can be adapted to the case of intermediate shocks.
Citation: Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569
References:
[1]

S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves,, SIAM J. Math. Anal., 32 (2001), 929.  doi: 10.1137/S0036141099361834.  Google Scholar

[2]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws,, reprint, (2015).   Google Scholar

[3]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[4]

N. Leger, $L^2$-stability estimates for shock solutions of scalar conservation laws using the relative entropy method,, Arch. Rational Mech. Anal., 199 (2011), 761.  doi: 10.1007/s00205-010-0341-7.  Google Scholar

[5]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations,, Arch. Ration. Mech. Anal., 201 (2011), 271.  doi: 10.1007/s00205-011-0431-1.  Google Scholar

[6]

T.-P. Liu, Pointwise convergence to $N$-waves for solutions of hyperbolic conservation laws,, Bull. Inst. Math. Acad. Sinica, 15 (1987), 1.   Google Scholar

[7]

A. Majda, The stability of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 41 (1983).  doi: 10.1090/memo/0275.  Google Scholar

[8]

A. Majda, The existence of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 43 (1983).  doi: 10.1090/memo/0281.  Google Scholar

[9]

D. Serre, Richness and the classification of quasilinear hyperbolic systems. Multidimensional hyperbolic problems and computations (Minneapolis, MN, 1989),, IMA Vol. Math. Appl., 29 (1991), 315.  doi: 10.1007/978-1-4613-9121-0_24.  Google Scholar

[10]

D. Serre, Systems of Conservation Laws, II,, Cambridge Univ. Press, (2000).   Google Scholar

[11]

D. Serre, The structure of dissipative viscous system of conservation laws,, PhysicaD, 239 (2010), 1381.  doi: 10.1016/j.physd.2009.03.014.  Google Scholar

[12]

D. Serre, Long-time stability in systems of conservation laws, using relative entropy/energy,, Arch. Ration. Mech. Anal., 219 (2016), 679.  doi: 10.1007/s00205-015-0903-9.  Google Scholar

[13]

D. Serre, A. Vasseur, $L^2$-type contraction for systems of conservation laws,, Journal de l'École polytechnique; Mathématiques, 1 (2014), 1.  doi: 10.5802/jep.1.  Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves,, SIAM J. Math. Anal., 32 (2001), 929.  doi: 10.1137/S0036141099361834.  Google Scholar

[2]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws,, reprint, (2015).   Google Scholar

[3]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[4]

N. Leger, $L^2$-stability estimates for shock solutions of scalar conservation laws using the relative entropy method,, Arch. Rational Mech. Anal., 199 (2011), 761.  doi: 10.1007/s00205-010-0341-7.  Google Scholar

[5]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations,, Arch. Ration. Mech. Anal., 201 (2011), 271.  doi: 10.1007/s00205-011-0431-1.  Google Scholar

[6]

T.-P. Liu, Pointwise convergence to $N$-waves for solutions of hyperbolic conservation laws,, Bull. Inst. Math. Acad. Sinica, 15 (1987), 1.   Google Scholar

[7]

A. Majda, The stability of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 41 (1983).  doi: 10.1090/memo/0275.  Google Scholar

[8]

A. Majda, The existence of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 43 (1983).  doi: 10.1090/memo/0281.  Google Scholar

[9]

D. Serre, Richness and the classification of quasilinear hyperbolic systems. Multidimensional hyperbolic problems and computations (Minneapolis, MN, 1989),, IMA Vol. Math. Appl., 29 (1991), 315.  doi: 10.1007/978-1-4613-9121-0_24.  Google Scholar

[10]

D. Serre, Systems of Conservation Laws, II,, Cambridge Univ. Press, (2000).   Google Scholar

[11]

D. Serre, The structure of dissipative viscous system of conservation laws,, PhysicaD, 239 (2010), 1381.  doi: 10.1016/j.physd.2009.03.014.  Google Scholar

[12]

D. Serre, Long-time stability in systems of conservation laws, using relative entropy/energy,, Arch. Ration. Mech. Anal., 219 (2016), 679.  doi: 10.1007/s00205-015-0903-9.  Google Scholar

[13]

D. Serre, A. Vasseur, $L^2$-type contraction for systems of conservation laws,, Journal de l'École polytechnique; Mathématiques, 1 (2014), 1.  doi: 10.5802/jep.1.  Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[8]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[9]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[10]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[13]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[18]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[19]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]