August  2016, 36(8): 4579-4598. doi: 10.3934/dcds.2016.36.4579

Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws

1. 

Department of Mathematics, Institute for Physical Science & Technology and Center of Scientific Computation and Mathematical Modeling (CSCAMM), University of Maryland, College Park, MD 20742

Received  May 2015 Revised  January 2016 Published  March 2016

Entropy stability plays an important role in the dynamics of nonlinear systems of hyperbolic conservation laws and related convection-diffusion equations. Here we are concerned with the corresponding question of numerical entropy stability --- we review a general framework for designing entropy stable approximations of such systems. The framework, developed in [28,29] and in an ongoing series of works [30,6,7], is based on comparing numerical viscosities to certain entropy-conservative schemes. It yields precise characterizations of entropy stability which is enforced in rarefactions while keeping sharp resolution of shocks.
    We demonstrate this approach with a host of second-- and higher--order accurate schemes, ranging from scalar examples to the systems of shallow-water, Euler and Navier-Stokes equations. We present a family of energy conservative schemes for the shallow-water equations with a well-balanced description of their steady-states. Numerical experiments provide a remarkable evidence for the different roles of viscosity and heat conduction in forming sharp monotone profiles in Euler equations, and we conclude with the computation of entropic measure-valued solutions based on the class of so-called TeCNO schemes --- arbitrarily high-order accurate, non-oscillatory and entropy stable schemes for systems of conservation laws.
Citation: Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579
References:
[1]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Annals of Mathematics, 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws: Some current topics on nonlinear conservation laws,, in AMS/IP Stud. Adv. Math., 15 (2000), 33.   Google Scholar

[3]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Springer, 325 (2000).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[4]

P. Deift and K. T. R. McLaughlin, A continuum limit of the Toda lattice,, Mem. Amer. Math. Soc., 131 (1998).  doi: 10.1090/memo/0624.  Google Scholar

[5]

R. J. DiPerna, Measure valued solutions to conservation laws,, Arch. Rational Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[6]

U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography,, J. Computational Physics, 230 (2011), 5587.  doi: 10.1016/j.jcp.2011.03.042.  Google Scholar

[7]

U. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws,, SIAM J. on Numerical Analysis, 50 (2012), 544.  doi: 10.1137/110836961.  Google Scholar

[8]

U. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws,, Foundations Comp. Math., (2015), 1.  doi: 10.1007/s10208-015-9299-z.  Google Scholar

[9]

K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686.  doi: 10.1073/pnas.68.8.1686.  Google Scholar

[10]

S. K. Godunov, An interesting class of quasilinear systems,, Dokl. Acad. Nauk. SSSR, 139 (1961), 521.   Google Scholar

[11]

A. Harten, B. Engquist, S. Osher and S. R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes,, J. Comput. Phys., 71 (1987), 231.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[12]

F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks,, Journal of Computational Physics, 228 (2009), 5410.  doi: 10.1016/j.jcp.2009.04.021.  Google Scholar

[13]

S. N. Kruzkhov, First order quasilinear equations in several independent variables,, USSR Math. Sbornik, 10 (1970), 217.   Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

P. D. Lax, Shock waves and entropy,, in Contributions to Nonlinear Functional Analysis, (1971), 603.   Google Scholar

[16]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, SIAM Regional Conference Lectures in Applied Mathematics, 11 (1973).   Google Scholar

[17]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[18]

P. D. Lax, Mathematics and Physics,, Bull. AMS, 45 (2008), 135.  doi: 10.1090/S0273-0979-07-01182-2.  Google Scholar

[19]

P. D. Lax, John von Neumann: The Early Years, The Years at Los Alamos and the Road to Computing,, in, (2014).   Google Scholar

[20]

P. D. Lax, D. Levermore and S. Venakidis, The generation and propagation of oscillations in dispersive IVPs and their limiting behavior,, in Important Developments in Soliton Theory 1980-1990 (T. Fokas and V. E. Zakharov, (1993), 1980.   Google Scholar

[21]

P. D. Lax and B. Wendroff, Systems of conservation laws,, Comm. Pure Appl. Math., 13 (1960), 217.  doi: 10.1002/cpa.3160130205.  Google Scholar

[22]

P. LeFloch and C. Rohde, High-order schemes, entropy inequalities and non-classical shocks,, SIAM J. Numer. Analm., 37 (2000), 2023.  doi: 10.1137/S0036142998345256.  Google Scholar

[23]

M. S. Mock, Systems of conservation of mixed type,, J. Diff. Eqns., 37 (1980), 70.  doi: 10.1016/0022-0396(80)90089-3.  Google Scholar

[24]

J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, J. Appl. Phys., 21 (1950), 232.  doi: 10.1063/1.1699639.  Google Scholar

[25]

P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes,, J. Comput. Phys., 43 (1981), 357.  doi: 10.1016/0021-9991(81)90128-5.  Google Scholar

[26]

C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes - II,, J. Comput. Phys., 83 (1989), 32.  doi: 10.1016/0021-9991(89)90222-2.  Google Scholar

[27]

E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes,, Math. Comp., 43 (1984), 369.  doi: 10.1090/S0025-5718-1984-0758189-X.  Google Scholar

[28]

E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I,, Math. Comp., 49 (1987), 91.  doi: 10.1090/S0025-5718-1987-0890255-3.  Google Scholar

[29]

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems,, Acta Numerica, 42 (2003), 451.  doi: 10.1017/S0962492902000156.  Google Scholar

[30]

E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity,, J. Hyperbolic DEs, 3 (2006), 529.  doi: 10.1142/S0219891606000896.  Google Scholar

show all references

References:
[1]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems,, Annals of Mathematics, 161 (2005), 223.  doi: 10.4007/annals.2005.161.223.  Google Scholar

[2]

G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws: Some current topics on nonlinear conservation laws,, in AMS/IP Stud. Adv. Math., 15 (2000), 33.   Google Scholar

[3]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Springer, 325 (2000).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[4]

P. Deift and K. T. R. McLaughlin, A continuum limit of the Toda lattice,, Mem. Amer. Math. Soc., 131 (1998).  doi: 10.1090/memo/0624.  Google Scholar

[5]

R. J. DiPerna, Measure valued solutions to conservation laws,, Arch. Rational Mech. Anal., 88 (1985), 223.  doi: 10.1007/BF00752112.  Google Scholar

[6]

U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography,, J. Computational Physics, 230 (2011), 5587.  doi: 10.1016/j.jcp.2011.03.042.  Google Scholar

[7]

U. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws,, SIAM J. on Numerical Analysis, 50 (2012), 544.  doi: 10.1137/110836961.  Google Scholar

[8]

U. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws,, Foundations Comp. Math., (2015), 1.  doi: 10.1007/s10208-015-9299-z.  Google Scholar

[9]

K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension,, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686.  doi: 10.1073/pnas.68.8.1686.  Google Scholar

[10]

S. K. Godunov, An interesting class of quasilinear systems,, Dokl. Acad. Nauk. SSSR, 139 (1961), 521.   Google Scholar

[11]

A. Harten, B. Engquist, S. Osher and S. R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes,, J. Comput. Phys., 71 (1987), 231.  doi: 10.1016/0021-9991(87)90031-3.  Google Scholar

[12]

F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks,, Journal of Computational Physics, 228 (2009), 5410.  doi: 10.1016/j.jcp.2009.04.021.  Google Scholar

[13]

S. N. Kruzkhov, First order quasilinear equations in several independent variables,, USSR Math. Sbornik, 10 (1970), 217.   Google Scholar

[14]

P. D. Lax, Hyperbolic systems of conservation laws II,, Comm. Pure Appl. Math., 10 (1957), 537.  doi: 10.1002/cpa.3160100406.  Google Scholar

[15]

P. D. Lax, Shock waves and entropy,, in Contributions to Nonlinear Functional Analysis, (1971), 603.   Google Scholar

[16]

P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,, SIAM Regional Conference Lectures in Applied Mathematics, 11 (1973).   Google Scholar

[17]

P. D. Lax, On dispersive difference schemes,, Physica D, 18 (1986), 250.  doi: 10.1016/0167-2789(86)90185-5.  Google Scholar

[18]

P. D. Lax, Mathematics and Physics,, Bull. AMS, 45 (2008), 135.  doi: 10.1090/S0273-0979-07-01182-2.  Google Scholar

[19]

P. D. Lax, John von Neumann: The Early Years, The Years at Los Alamos and the Road to Computing,, in, (2014).   Google Scholar

[20]

P. D. Lax, D. Levermore and S. Venakidis, The generation and propagation of oscillations in dispersive IVPs and their limiting behavior,, in Important Developments in Soliton Theory 1980-1990 (T. Fokas and V. E. Zakharov, (1993), 1980.   Google Scholar

[21]

P. D. Lax and B. Wendroff, Systems of conservation laws,, Comm. Pure Appl. Math., 13 (1960), 217.  doi: 10.1002/cpa.3160130205.  Google Scholar

[22]

P. LeFloch and C. Rohde, High-order schemes, entropy inequalities and non-classical shocks,, SIAM J. Numer. Analm., 37 (2000), 2023.  doi: 10.1137/S0036142998345256.  Google Scholar

[23]

M. S. Mock, Systems of conservation of mixed type,, J. Diff. Eqns., 37 (1980), 70.  doi: 10.1016/0022-0396(80)90089-3.  Google Scholar

[24]

J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks,, J. Appl. Phys., 21 (1950), 232.  doi: 10.1063/1.1699639.  Google Scholar

[25]

P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes,, J. Comput. Phys., 43 (1981), 357.  doi: 10.1016/0021-9991(81)90128-5.  Google Scholar

[26]

C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes - II,, J. Comput. Phys., 83 (1989), 32.  doi: 10.1016/0021-9991(89)90222-2.  Google Scholar

[27]

E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes,, Math. Comp., 43 (1984), 369.  doi: 10.1090/S0025-5718-1984-0758189-X.  Google Scholar

[28]

E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I,, Math. Comp., 49 (1987), 91.  doi: 10.1090/S0025-5718-1987-0890255-3.  Google Scholar

[29]

E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems,, Acta Numerica, 42 (2003), 451.  doi: 10.1017/S0962492902000156.  Google Scholar

[30]

E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity,, J. Hyperbolic DEs, 3 (2006), 529.  doi: 10.1142/S0219891606000896.  Google Scholar

[1]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050

[2]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[3]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[4]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[5]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[6]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[7]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[10]

Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020408

[11]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[12]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[13]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[14]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[15]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[16]

Cung The Anh, Dang Thi Phuong Thanh, Nguyen Duong Toan. Uniform attractors of 3D Navier-Stokes-Voigt equations with memory and singularly oscillating external forces. Evolution Equations & Control Theory, 2021, 10 (1) : 1-23. doi: 10.3934/eect.2020039

[17]

Andrea Giorgini, Roger Temam, Xuan-Truong Vu. The Navier-Stokes-Cahn-Hilliard equations for mildly compressible binary fluid mixtures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 337-366. doi: 10.3934/dcdsb.2020141

[18]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[19]

Bing Gao, Rui Gao. On fair entropy of the tent family. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021017

[20]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]