Citation: |
[1] |
S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics, 161 (2005), 223-342.doi: 10.4007/annals.2005.161.223. |
[2] |
G.-Q. Chen, Compactness methods and nonlinear hyperbolic conservation laws: Some current topics on nonlinear conservation laws, in AMS/IP Stud. Adv. Math., 15, Amer. Math. Soc., Providence, RI, (2000), 33-75. |
[3] |
C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 325, 2000.doi: 10.1007/978-3-642-04048-1. |
[4] |
P. Deift and K. T. R. McLaughlin, A continuum limit of the Toda lattice, Mem. Amer. Math. Soc., 131 (1998), x+216 pp.doi: 10.1090/memo/0624. |
[5] |
R. J. DiPerna, Measure valued solutions to conservation laws, Arch. Rational Mech. Anal., 88 (1985), 223-270.doi: 10.1007/BF00752112. |
[6] |
U. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Computational Physics, 230 (2011), 5587-5609.doi: 10.1016/j.jcp.2011.03.042. |
[7] |
U. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high order accurate entropy stable essentially non-oscillatory schemes for systems of conservation laws, SIAM J. on Numerical Analysis, 50 (2012), 544-573.doi: 10.1137/110836961. |
[8] |
U. Fjordholm, R. Kappeli, S. Mishra and E. Tadmor, Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws, Foundations Comp. Math., (2015), 1-65.doi: 10.1007/s10208-015-9299-z. |
[9] |
K. O. Friedrichs and P. D. Lax, Systems of conservation laws with a convex extension, Proc. Nat. Acad. Sci. USA, 68 (1971), 1686-1688.doi: 10.1073/pnas.68.8.1686. |
[10] |
S. K. Godunov, An interesting class of quasilinear systems, Dokl. Acad. Nauk. SSSR, 139 (1961), 521-523. |
[11] |
A. Harten, B. Engquist, S. Osher and S. R. Chakravarty, Uniformly high order accurate essentially non-oscillatory schemes, J. Comput. Phys., 71 (1987), 231-303.doi: 10.1016/0021-9991(87)90031-3. |
[12] |
F. Ismail and P. L. Roe, Affordable, entropy-consistent Euler flux functions II: Entropy production at shocks, Journal of Computational Physics, 228 (2009), 5410-5436.doi: 10.1016/j.jcp.2009.04.021. |
[13] |
S. N. Kruzkhov, First order quasilinear equations in several independent variables, USSR Math. Sbornik, 10 (1970), 217-243. |
[14] |
P. D. Lax, Hyperbolic systems of conservation laws II, Comm. Pure Appl. Math., 10 (1957), 537-566.doi: 10.1002/cpa.3160100406. |
[15] |
P. D. Lax, Shock waves and entropy, in Contributions to Nonlinear Functional Analysis, (E. A. Zarantonello, ed.), Academic Press, New York, (1971), 603-634. |
[16] |
P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conference Lectures in Applied Mathematics, 11, 1973. |
[17] |
P. D. Lax, On dispersive difference schemes, Physica D, 18 (1986), 250-254.doi: 10.1016/0167-2789(86)90185-5. |
[18] |
P. D. Lax, Mathematics and Physics, Bull. AMS, 45 (2008), 135-152.doi: 10.1090/S0273-0979-07-01182-2. |
[19] |
P. D. Lax, John von Neumann: The Early Years, The Years at Los Alamos and the Road to Computing, in "Modern Perspectives in Applied Mathematics: Theory and Numerics of PDEs'', 2014. Available from: http://www.ki-net.umd.edu/tn60/2014_04_30_Lax_Banquet_talk.pdf. |
[20] |
P. D. Lax, D. Levermore and S. Venakidis, The generation and propagation of oscillations in dispersive IVPs and their limiting behavior, in Important Developments in Soliton Theory 1980-1990 (T. Fokas and V. E. Zakharov, eds), Springer, Berlin, 1993. |
[21] |
P. D. Lax and B. Wendroff, Systems of conservation laws, Comm. Pure Appl. Math., 13 (1960), 217-237.doi: 10.1002/cpa.3160130205. |
[22] |
P. LeFloch and C. Rohde, High-order schemes, entropy inequalities and non-classical shocks, SIAM J. Numer. Analm., 37 (2000), 2023-2060.doi: 10.1137/S0036142998345256. |
[23] |
M. S. Mock, Systems of conservation of mixed type, J. Diff. Eqns., 37 (1980), 70-88.doi: 10.1016/0022-0396(80)90089-3. |
[24] |
J. von Neumann and R. D. Richtmyer, A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21 (1950), 232-237.doi: 10.1063/1.1699639. |
[25] |
P. L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes, J. Comput. Phys., 43 (1981), 357-372.doi: 10.1016/0021-9991(81)90128-5. |
[26] |
C. W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory schemes - II, J. Comput. Phys., 83 (1989), 32-78.doi: 10.1016/0021-9991(89)90222-2. |
[27] |
E. Tadmor, Numerical viscosity and the entropy condition for conservative difference schemes, Math. Comp., 43 (1984), 369-381.doi: 10.1090/S0025-5718-1984-0758189-X. |
[28] |
E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws, I, Math. Comp., 49 (1987), 91-103.doi: 10.1090/S0025-5718-1987-0890255-3. |
[29] |
E. Tadmor, Entropy stability theory for difference approximations of nonlinear conservation laws and related time dependent problems, Acta Numerica, 42 (2003), 451-512.doi: 10.1017/S0962492902000156. |
[30] |
E. Tadmor and W. Zhong, Entropy stable approximations of Navier-Stokes equations with no artificial numerical viscosity, J. Hyperbolic DEs, 3 (2006), 529-559.doi: 10.1142/S0219891606000896. |