- Previous Article
- DCDS Home
- This Issue
-
Next Article
Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws
Numerical algorithms for stationary statistical properties of dissipative dynamical systems
1. | Department of Mathematics, The Florida State University, Tallahassee, FL 32306-4510 |
References:
[1] |
P. Billingsley, Weak Convergence of Measures: Applications in Probability,, SIAM, (1971).
|
[2] |
E. Cancs, E. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics,, ESAIM: Mathematical Modelling and Numerical Analysis, 41 (2007), 351.
doi: 10.1051/m2an:2007014. |
[3] |
W. Cheng and X. Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite prandtl number model,, Applied Mathematics Letters, 21 (2008), 1281.
doi: 10.1016/j.aml.2007.07.036. |
[4] |
W. Cheng and X. Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model,, SIAM J. Num. Anal., 47 (2008), 250.
doi: 10.1137/080713501. |
[5] |
C. Chiu, Q. Du and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator,, Nonlinear Anal., 19 (1992), 291.
doi: 10.1016/0362-546X(92)90175-E. |
[6] |
A. Chorin, Vorticity and Turbulence,, Springer-Verlag, (1994).
doi: 10.1007/978-1-4419-8728-0. |
[7] |
P. Constantin and C. Foias, Navier-Stokes Equations,, The University of Chicago Press, (1988).
|
[8] |
W. E and D. Li, The Andersen thermostat in molecular dynamics,, Comm. Pure Appl. Math., 61 (2008), 96.
doi: 10.1002/cpa.20198. |
[9] |
C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.
doi: 10.1088/0951-7715/4/3/001. |
[10] |
C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation,, Phys. Lett. A, 186 (1994), 87.
doi: 10.1016/0375-9601(94)90926-1. |
[11] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Encyclopedia of Mathematics and its Applications, (2001).
doi: 10.1017/CBO9780511546754. |
[12] |
T. Geveci, On the convergence of a time discretization scheme for the Navier-Stokes equations,, Math. Comp., 53 (1989), 43.
doi: 10.1090/S0025-5718-1989-0969488-5. |
[13] |
S. Gottlieb, F. Tone, C. Wang, X. Wang and D. Wirosoetisno, Long time stability of a classical efficient scheme for two dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 50 (2012), 126.
doi: 10.1137/110834901. |
[14] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Providence, (1988).
|
[15] |
J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750.
doi: 10.1137/0723049. |
[16] |
A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equation,, IMA J. Numer. Anal., 20 (2000), 663.
doi: 10.1093/imanum/20.4.633. |
[17] |
D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, J. Math. Anal. Appl., 219 (1998), 479.
doi: 10.1006/jmaa.1997.5847. |
[18] |
N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.
doi: 10.1093/imanum/22.4.577. |
[19] |
L. P. Kadanoff, Turbulent heat flow: Structures and scaling,, Physics Today, 54 (2001), 34.
doi: 10.1063/1.1404847. |
[20] |
S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348.
doi: 10.1137/0726019. |
[21] |
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics, 2nd, ed., New York, (1994).
doi: 10.1007/978-1-4612-4286-4. |
[22] |
P. D. Lax, Functional Analysis,, New York : Wiley, (2002).
|
[23] |
P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations,, Comm. Pure Appl. Math., 9 (1956), 267.
doi: 10.1002/cpa.3160090206. |
[24] |
G. J. Lord, Attractors and inertial manifolds for finite-difference approximation of the complex Ginzburg-Landau equation,, SIAM J. Numer. Anal., 34 (1997), 1483.
doi: 10.1137/S003614299528554X. |
[25] |
G. J. Lord and A. M. Stuart, Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite-difference approximation to the Ginzburg-Landau equation,, Numer. Funct. Anal. Optim., 16 (1995), 1003.
doi: 10.1080/01630569508816658. |
[26] |
A. J. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).
|
[27] |
A. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows,, Cambridge University Press, (2006).
doi: 10.1017/CBO9780511616778. |
[28] |
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics; Mechanics of Turbulence,, English ed. updated, (1975). Google Scholar |
[29] |
G. Raugel, Global attractors in partial differential equations,, in Handbook of dynamical systems, 2 (2002), 885.
doi: 10.1016/S1874-575X(02)80038-8. |
[30] |
S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549.
doi: 10.1137/S0036142997329797. |
[31] |
J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations,, Numer. Funct. Anal. and Optimiz., 10 (1989), 1213.
doi: 10.1080/01630568908816354. |
[32] |
J. Shen, Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201.
doi: 10.1080/00036819008839963. |
[33] |
H. Sigurgeirsson and A. M. Stuart, Statistics from computations,, in Foundations of Computational Mathematics, 284 (2001), 323.
|
[34] |
A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996).
|
[35] |
D. Talay, Simulation of stochastic differential systems,, in Probabilistic Methods in Applied Physics, 451 (1995), 54.
doi: 10.1007/3-540-60214-3_51. |
[36] |
R. M. Temam, Sur l'approximation des solutions des équations de Navier-Stokes,, C.R. Acad. Sci., 262 (1966), 219.
|
[37] |
R. M. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition,, CBMS-SIAM, (1995).
doi: 10.1137/1.9781611970050. |
[38] |
R. M. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997).
doi: 10.1007/978-1-4612-0645-3. |
[39] |
F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical systems generated by the two-dimensional Rayleigh-Benard convection problem,, Analysis and Applications, 9 (2011), 421.
doi: 10.1142/S0219530511001935. |
[40] |
F. Tone, X. Wang and D. Wirosoetisno, Long-time dynamics of 2d double-diffusive convection: Analysis and/of numerics,, Numer. Math., 130 (2015), 541.
doi: 10.1007/s00211-014-0670-9. |
[41] |
F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Num. Anal., 44 (2006), 29.
doi: 10.1137/040618527. |
[42] |
P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems,, SIAM J. Applied Dynamical Systems, 4 (2005), 563.
doi: 10.1137/040603802. |
[43] |
M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics,, Kluwer Acad. Publishers, (1988).
doi: 10.1007/978-94-009-1423-0. |
[44] |
P. Walters, An introduction to ergodic theory,, Springer-Verlag, (1982).
|
[45] |
X. Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection,, Comm. Pure and Appl. Math., 57 (2004), 1265.
doi: 10.1002/cpa.3047. |
[46] |
X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pure and Appl. Math., 61 (2008), 789.
doi: 10.1002/cpa.20214. |
[47] |
X. Wang, Upper Semi-Continuity of Stationary Statistical Properties of Dissipative Systems,, Dedicated to Prof. Li Ta-Tsien on the occasion of his 70th birthday, 23 (2009), 521.
doi: 10.3934/dcds.2009.23.521. |
[48] |
X. Wang, Approximating stationary statistical properties,, Chinese Ann. Math. Series B, 30 (2009), 831.
doi: 10.1007/s11401-009-0178-2. |
[49] |
X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259.
doi: 10.1090/S0025-5718-09-02256-X. |
[50] |
X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.
doi: 10.1007/s00211-012-0450-3. |
[51] |
Y. Yan, Attractors and error estimates for discretizations of incompressible Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 1451.
doi: 10.1137/S0036142993248092. |
show all references
References:
[1] |
P. Billingsley, Weak Convergence of Measures: Applications in Probability,, SIAM, (1971).
|
[2] |
E. Cancs, E. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics,, ESAIM: Mathematical Modelling and Numerical Analysis, 41 (2007), 351.
doi: 10.1051/m2an:2007014. |
[3] |
W. Cheng and X. Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite prandtl number model,, Applied Mathematics Letters, 21 (2008), 1281.
doi: 10.1016/j.aml.2007.07.036. |
[4] |
W. Cheng and X. Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model,, SIAM J. Num. Anal., 47 (2008), 250.
doi: 10.1137/080713501. |
[5] |
C. Chiu, Q. Du and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator,, Nonlinear Anal., 19 (1992), 291.
doi: 10.1016/0362-546X(92)90175-E. |
[6] |
A. Chorin, Vorticity and Turbulence,, Springer-Verlag, (1994).
doi: 10.1007/978-1-4419-8728-0. |
[7] |
P. Constantin and C. Foias, Navier-Stokes Equations,, The University of Chicago Press, (1988).
|
[8] |
W. E and D. Li, The Andersen thermostat in molecular dynamics,, Comm. Pure Appl. Math., 61 (2008), 96.
doi: 10.1002/cpa.20198. |
[9] |
C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591.
doi: 10.1088/0951-7715/4/3/001. |
[10] |
C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation,, Phys. Lett. A, 186 (1994), 87.
doi: 10.1016/0375-9601(94)90926-1. |
[11] |
C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Encyclopedia of Mathematics and its Applications, (2001).
doi: 10.1017/CBO9780511546754. |
[12] |
T. Geveci, On the convergence of a time discretization scheme for the Navier-Stokes equations,, Math. Comp., 53 (1989), 43.
doi: 10.1090/S0025-5718-1989-0969488-5. |
[13] |
S. Gottlieb, F. Tone, C. Wang, X. Wang and D. Wirosoetisno, Long time stability of a classical efficient scheme for two dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 50 (2012), 126.
doi: 10.1137/110834901. |
[14] |
J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Providence, (1988).
|
[15] |
J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750.
doi: 10.1137/0723049. |
[16] |
A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equation,, IMA J. Numer. Anal., 20 (2000), 663.
doi: 10.1093/imanum/20.4.633. |
[17] |
D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, J. Math. Anal. Appl., 219 (1998), 479.
doi: 10.1006/jmaa.1997.5847. |
[18] |
N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577.
doi: 10.1093/imanum/22.4.577. |
[19] |
L. P. Kadanoff, Turbulent heat flow: Structures and scaling,, Physics Today, 54 (2001), 34.
doi: 10.1063/1.1404847. |
[20] |
S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348.
doi: 10.1137/0726019. |
[21] |
A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics, 2nd, ed., New York, (1994).
doi: 10.1007/978-1-4612-4286-4. |
[22] |
P. D. Lax, Functional Analysis,, New York : Wiley, (2002).
|
[23] |
P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations,, Comm. Pure Appl. Math., 9 (1956), 267.
doi: 10.1002/cpa.3160090206. |
[24] |
G. J. Lord, Attractors and inertial manifolds for finite-difference approximation of the complex Ginzburg-Landau equation,, SIAM J. Numer. Anal., 34 (1997), 1483.
doi: 10.1137/S003614299528554X. |
[25] |
G. J. Lord and A. M. Stuart, Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite-difference approximation to the Ginzburg-Landau equation,, Numer. Funct. Anal. Optim., 16 (1995), 1003.
doi: 10.1080/01630569508816658. |
[26] |
A. J. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002).
|
[27] |
A. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows,, Cambridge University Press, (2006).
doi: 10.1017/CBO9780511616778. |
[28] |
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics; Mechanics of Turbulence,, English ed. updated, (1975). Google Scholar |
[29] |
G. Raugel, Global attractors in partial differential equations,, in Handbook of dynamical systems, 2 (2002), 885.
doi: 10.1016/S1874-575X(02)80038-8. |
[30] |
S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549.
doi: 10.1137/S0036142997329797. |
[31] |
J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations,, Numer. Funct. Anal. and Optimiz., 10 (1989), 1213.
doi: 10.1080/01630568908816354. |
[32] |
J. Shen, Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201.
doi: 10.1080/00036819008839963. |
[33] |
H. Sigurgeirsson and A. M. Stuart, Statistics from computations,, in Foundations of Computational Mathematics, 284 (2001), 323.
|
[34] |
A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996).
|
[35] |
D. Talay, Simulation of stochastic differential systems,, in Probabilistic Methods in Applied Physics, 451 (1995), 54.
doi: 10.1007/3-540-60214-3_51. |
[36] |
R. M. Temam, Sur l'approximation des solutions des équations de Navier-Stokes,, C.R. Acad. Sci., 262 (1966), 219.
|
[37] |
R. M. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition,, CBMS-SIAM, (1995).
doi: 10.1137/1.9781611970050. |
[38] |
R. M. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997).
doi: 10.1007/978-1-4612-0645-3. |
[39] |
F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical systems generated by the two-dimensional Rayleigh-Benard convection problem,, Analysis and Applications, 9 (2011), 421.
doi: 10.1142/S0219530511001935. |
[40] |
F. Tone, X. Wang and D. Wirosoetisno, Long-time dynamics of 2d double-diffusive convection: Analysis and/of numerics,, Numer. Math., 130 (2015), 541.
doi: 10.1007/s00211-014-0670-9. |
[41] |
F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Num. Anal., 44 (2006), 29.
doi: 10.1137/040618527. |
[42] |
P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems,, SIAM J. Applied Dynamical Systems, 4 (2005), 563.
doi: 10.1137/040603802. |
[43] |
M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics,, Kluwer Acad. Publishers, (1988).
doi: 10.1007/978-94-009-1423-0. |
[44] |
P. Walters, An introduction to ergodic theory,, Springer-Verlag, (1982).
|
[45] |
X. Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection,, Comm. Pure and Appl. Math., 57 (2004), 1265.
doi: 10.1002/cpa.3047. |
[46] |
X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pure and Appl. Math., 61 (2008), 789.
doi: 10.1002/cpa.20214. |
[47] |
X. Wang, Upper Semi-Continuity of Stationary Statistical Properties of Dissipative Systems,, Dedicated to Prof. Li Ta-Tsien on the occasion of his 70th birthday, 23 (2009), 521.
doi: 10.3934/dcds.2009.23.521. |
[48] |
X. Wang, Approximating stationary statistical properties,, Chinese Ann. Math. Series B, 30 (2009), 831.
doi: 10.1007/s11401-009-0178-2. |
[49] |
X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259.
doi: 10.1090/S0025-5718-09-02256-X. |
[50] |
X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753.
doi: 10.1007/s00211-012-0450-3. |
[51] |
Y. Yan, Attractors and error estimates for discretizations of incompressible Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 1451.
doi: 10.1137/S0036142993248092. |
[1] |
Xiaoming Wang. Upper semi-continuity of stationary statistical properties of dissipative systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 521-540. doi: 10.3934/dcds.2009.23.521 |
[2] |
Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021019 |
[3] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[4] |
Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241 |
[5] |
Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001 |
[6] |
Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020352 |
[7] |
Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021024 |
[8] |
Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, 2021, 14 (1) : 89-113. doi: 10.3934/krm.2020050 |
[9] |
Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020348 |
[10] |
Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020110 |
[11] |
Xin-Guang Yang, Rong-Nian Wang, Xingjie Yan, Alain Miranville. Dynamics of the 2D Navier-Stokes equations with sublinear operators in Lipschitz-like domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020408 |
[12] |
Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142 |
[13] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[14] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[15] |
Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020345 |
[16] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[17] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[18] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020376 |
[19] |
Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062 |
[20] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]