January  2016, 36(1): 499-508. doi: 10.3934/dcds.2016.36.499

Radial sign-changing solution for fractional Schrödinger equation

1. 

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, P.O. Box 71010, Wuhan 430071, China

Received  January 2014 Revised  December 2014 Published  June 2015

We study the existence of a radial sign-changing solution for the stationary fractional Schrödinger equation \begin{equation}\nonumber (-\Delta)^\alpha u + u=|u|^{p-1}u,\ x\in \mathbb{R}^N, N\geq 2.~~~~~~~~~~~~~{\rm (FS)} \end{equation} where $\alpha\in (0,1)$ and $p\in(1,2_\alpha^*-1)$, $2_\alpha^*=\frac{2N}{N-2\alpha}$. By using Brouwer degree theory and variational method, we prove that there exists a radial sign-changing solution of (FS).
Citation: Zhengping Wang, Huan-Song Zhou. Radial sign-changing solution for fractional Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 499-508. doi: 10.3934/dcds.2016.36.499
References:
[1]

T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations,, Commun. Partial Differential Equations, 29 (2004), 25. doi: 10.1081/PDE-120028842. Google Scholar

[2]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259. doi: 10.1016/j.anihpc.2004.07.005. Google Scholar

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II, Existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347. doi: 10.1007/BF00250556. Google Scholar

[4]

X. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity,, Nonlinearity, 26 (2013), 479. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[5]

P. Felmer, A. Quaas and J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[6]

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, , (). Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4746806. Google Scholar

[8]

C. Jones and T. Küpper, On the infinitely many solutions of a semilinear elliptic equation,, SIAM J. Math. Anal., 17 (1986), 803. doi: 10.1137/0517059. Google Scholar

[9]

N. Laskin, Fractional Schrödinger equations,, Phys. Rev. E, 66 (2002). doi: 10.1103/PhysRevE.66.056108. Google Scholar

[10]

P. L. Lions, Symétrie et compacité dans les espaces de Sobolev,, J. Funct. Anal., 49 (1982), 315. doi: 10.1016/0022-1236(82)90072-6. Google Scholar

[11]

C. Miranda, Un' osservazione su un teorema di Brouwer,, Bol. Un. Mat. Ital., 3 (1940), 5. Google Scholar

[12]

E. S. Noussair and J. Wei, On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem,, Indiana Univ. Math. J., 46 (1997), 1255. doi: 10.1512/iumj.1997.46.1401. Google Scholar

show all references

References:
[1]

T. Bartsch, Z. Liu and T. Weth, Sign changing solutions of superlinear Schrödinger equations,, Commun. Partial Differential Equations, 29 (2004), 25. doi: 10.1081/PDE-120028842. Google Scholar

[2]

T. Bartsch and T. Weth, Three nodal solutions of singularly perturbed elliptic equations on domains without topology,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 259. doi: 10.1016/j.anihpc.2004.07.005. Google Scholar

[3]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, II, Existence of infinitely many solutions,, Arch. Rational Mech. Anal., 82 (1983), 347. doi: 10.1007/BF00250556. Google Scholar

[4]

X. Chang and Z. Q. Wang, Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity,, Nonlinearity, 26 (2013), 479. doi: 10.1088/0951-7715/26/2/479. Google Scholar

[5]

P. Felmer, A. Quaas and J. G. Tan, Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian,, Proc. Roy. Soc. Edinburgh, 142 (2012), 1237. doi: 10.1017/S0308210511000746. Google Scholar

[6]

R.L. Frank, E. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian,, , (). Google Scholar

[7]

B. L. Guo and D. W. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4746806. Google Scholar

[8]

C. Jones and T. Küpper, On the infinitely many solutions of a semilinear elliptic equation,, SIAM J. Math. Anal., 17 (1986), 803. doi: 10.1137/0517059. Google Scholar

[9]

N. Laskin, Fractional Schrödinger equations,, Phys. Rev. E, 66 (2002). doi: 10.1103/PhysRevE.66.056108. Google Scholar

[10]

P. L. Lions, Symétrie et compacité dans les espaces de Sobolev,, J. Funct. Anal., 49 (1982), 315. doi: 10.1016/0022-1236(82)90072-6. Google Scholar

[11]

C. Miranda, Un' osservazione su un teorema di Brouwer,, Bol. Un. Mat. Ital., 3 (1940), 5. Google Scholar

[12]

E. S. Noussair and J. Wei, On the effect of the domain geometry on the existence and profile of nodal solution of some singularly perturbed semilinear Dirichlet problem,, Indiana Univ. Math. J., 46 (1997), 1255. doi: 10.1512/iumj.1997.46.1401. Google Scholar

[1]

Hongxia Shi, Haibo Chen. Infinitely many solutions for generalized quasilinear Schrödinger equations with sign-changing potential. Communications on Pure & Applied Analysis, 2018, 17 (1) : 53-66. doi: 10.3934/cpaa.2018004

[2]

Bartosz Bieganowski, Jaros law Mederski. Nonlinear SchrÖdinger equations with sum of periodic and vanishing potentials and sign-changing nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (1) : 143-161. doi: 10.3934/cpaa.2018009

[3]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[4]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

[5]

Guirong Liu, Yuanwei Qi. Sign-changing solutions of a quasilinear heat equation with a source term. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1389-1414. doi: 10.3934/dcdsb.2013.18.1389

[6]

Wei Long, Shuangjie Peng, Jing Yang. Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 917-939. doi: 10.3934/dcds.2016.36.917

[7]

Gabriele Cora, Alessandro Iacopetti. Sign-changing bubble-tower solutions to fractional semilinear elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6149-6173. doi: 10.3934/dcds.2019268

[8]

Jun Yang, Yaotian Shen. Weighted Sobolev-Hardy spaces and sign-changing solutions of degenerate elliptic equation. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2565-2575. doi: 10.3934/cpaa.2013.12.2565

[9]

Angela Pistoia, Tonia Ricciardi. Sign-changing tower of bubbles for a sinh-Poisson equation with asymmetric exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5651-5692. doi: 10.3934/dcds.2017245

[10]

M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057

[11]

Yohei Sato, Zhi-Qiang Wang. On the least energy sign-changing solutions for a nonlinear elliptic system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2151-2164. doi: 10.3934/dcds.2015.35.2151

[12]

Aixia Qian, Shujie Li. Multiple sign-changing solutions of an elliptic eigenvalue problem. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 737-746. doi: 10.3934/dcds.2005.12.737

[13]

Salomón Alarcón, Jinggang Tan. Sign-changing solutions for some nonhomogeneous nonlocal critical elliptic problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5825-5846. doi: 10.3934/dcds.2019256

[14]

J. Húska, Peter Poláčik, M.V. Safonov. Principal eigenvalues, spectral gaps and exponential separation between positive and sign-changing solutions of parabolic equations. Conference Publications, 2005, 2005 (Special) : 427-435. doi: 10.3934/proc.2005.2005.427

[15]

Yuanxiao Li, Ming Mei, Kaijun Zhang. Existence of multiple nontrivial solutions for a $p$-Kirchhoff type elliptic problem involving sign-changing weight functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 883-908. doi: 10.3934/dcdsb.2016.21.883

[16]

Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439

[17]

Jijiang Sun, Shiwang Ma. Infinitely many sign-changing solutions for the Brézis-Nirenberg problem. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2317-2330. doi: 10.3934/cpaa.2014.13.2317

[18]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[19]

Wen Zhang, Xianhua Tang, Bitao Cheng, Jian Zhang. Sign-changing solutions for fourth order elliptic equations with Kirchhoff-type. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2161-2177. doi: 10.3934/cpaa.2016032

[20]

Huxiao Luo, Xianhua Tang, Zu Gao. Sign-changing solutions for non-local elliptic equations with asymptotically linear term. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1147-1159. doi: 10.3934/cpaa.2018055

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]