-
Previous Article
Dynnikov and train track transition matrices of pseudo-Anosov braids
- DCDS Home
- This Issue
-
Next Article
Radial sign-changing solution for fractional Schrödinger equation
Behavior $0$ nonsingular Morse Smale flows on $S^3$
1. | Department of Mathematics, Tongji University, Shanghai 200092 |
  1. we use WLG to list behavior $0$ NMS flows on $S^3$;
  2. with the help of WLG, comparing with Wada's algorithm, we provide a direct description about the (indexed) link of behavior $0$ NMS flows;
  3. to overcome the weakness that WLG can't decide topologically equivalent class, we give a simplified Umanskii Theorem to decide when two behavior $0$ NMS flows on $S^3$ are topological equivalence;
  4. under these theories, we classify (up to topological equivalence) all behavior 0 NMS flows on $S^3$ with periodic orbits number no more than 4.
References:
[1] |
D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. of Math. (2), 102 (1975), 41-54.
doi: 10.2307/1970972. |
[2] |
D. Asimov, Homotopy of non-singular vector fields to structurally stable ones, Ann. of Math. (2), 102 (1975), 55-65.
doi: 10.2307/1970973. |
[3] |
C. Bonatti, V. Grines and R. Langevin, Dynamical systems in dimension 2 and 3: conjugacy invariants and classification, in The geometry of differential equations and dynamical systems, Comput. Appl. Math., 20 (2001), 11-50. |
[4] |
B. Campos and P. Vindel, NMS flows on $S^3$ with no heteroclinic trajectories connecting saddle orbits, J. Dynam. Differential Equations, 24 (2012), 181-196.
doi: 10.1007/s10884-012-9247-4. |
[5] |
J. Franks, Nonsingular Smale flows on $S^{3}$, Topology, 24 (1985), 265-282.
doi: 10.1016/0040-9383(85)90002-3. |
[6] |
V. Grines and O. Pochinka, Morse-Smale cascades on 3-manifolds, (Russian) Uspekhi Mat. Nauk, 68 (2013), 129-188; translation in Russian Math. Surveys, 68 (2013), 117-173. |
[7] |
A. Hatcher, Notes on Basic 3-Manifold Topology,, Available from: , ().
|
[8] |
J. Morgan, Nonsingular Morse-Smale flows on 3-dimensional manifolds, Topology, 18 (1978), 41-53.
doi: 10.1016/0040-9383(79)90013-2. |
[9] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982. |
[10] |
M. Peixoto, On the classification of flows on 2 -manifolds, in Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971, Academic Press, (1973), 389-419. |
[11] |
A. Prishlyak, A complete topological invariant of Morse-Smale flows and handle decompositions of 3-manifolds, (Russian) Fundam. Prikl. Mat., 11 (2005), 185-196; translation in J. Math. Sci. (N. Y.), 144 (2007), 4492-4499.
doi: 10.1007/s10958-007-0287-y. |
[12] |
K. de Rezende, Smale flows on the three-sphere, Trans. Amer. Math. Soc, 303 (1987), 283-310.
doi: 10.1090/S0002-9947-1987-0896023-7. |
[13] |
D. Rolfsen, Knots and Links, Corrected reprint of the 1976 original. Mathematics Lecture Series, 7. Publish or Perish, Inc., Houston, TX, 1990. |
[14] |
C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, $2^{nd}$ edition, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1999. |
[15] |
K. Sasano, Links of closed orbits of nonsingular Morse-Smale flows, Proc. Amer. Math. Soc., 88 (1983), 727-734.
doi: 10.1090/S0002-9939-1983-0702309-0. |
[16] |
Y. Umanskii, Necessary and sufficient conditions for topological equivalence of three-dimensional dynamical Morse-Smale systems with a finite number of singular trajectories, (Russian)Mat. Sb., 181 (1990), 212-239; translation in Math. USSR-Sb., 69 (1991), 227-253. |
[17] |
M. Wada, Closed orbits of nonsingular Morse-Smale flows on $S^3$, J. Math. Soc. Japan, 41 (1989), 405-413.
doi: 10.2969/jmsj/04130405. |
[18] |
K. Yano, The homotopy class of nonsingular Morse-Smale vector fields on 3 -manifolds, Invent. Math., 80 (1985), 435-451.
doi: 10.1007/BF01388724. |
[19] |
B. Yu, The templates of non-singular Smale flows on three manifolds, Ergodic Theory Dynam. Systems, 32 (2012), 1137-1155.
doi: 10.1017/S0143385711000150. |
[20] |
B. Yu, Lyapunov graphs of nonsingular Smale flows on $S^1 \times S^2$, Trans. Amer. Math. Soc., 365 (2013), 767-783.
doi: 10.1090/S0002-9947-2012-05636-4. |
[21] |
B. Yu, A note on homotopy classes of nonsingular verctor fields on $S^3$, C. R. Math. Acad. Sci. Paris, 352 (2014), 351-355.
doi: 10.1016/j.crma.2014.01.016. |
show all references
References:
[1] |
D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. of Math. (2), 102 (1975), 41-54.
doi: 10.2307/1970972. |
[2] |
D. Asimov, Homotopy of non-singular vector fields to structurally stable ones, Ann. of Math. (2), 102 (1975), 55-65.
doi: 10.2307/1970973. |
[3] |
C. Bonatti, V. Grines and R. Langevin, Dynamical systems in dimension 2 and 3: conjugacy invariants and classification, in The geometry of differential equations and dynamical systems, Comput. Appl. Math., 20 (2001), 11-50. |
[4] |
B. Campos and P. Vindel, NMS flows on $S^3$ with no heteroclinic trajectories connecting saddle orbits, J. Dynam. Differential Equations, 24 (2012), 181-196.
doi: 10.1007/s10884-012-9247-4. |
[5] |
J. Franks, Nonsingular Smale flows on $S^{3}$, Topology, 24 (1985), 265-282.
doi: 10.1016/0040-9383(85)90002-3. |
[6] |
V. Grines and O. Pochinka, Morse-Smale cascades on 3-manifolds, (Russian) Uspekhi Mat. Nauk, 68 (2013), 129-188; translation in Russian Math. Surveys, 68 (2013), 117-173. |
[7] |
A. Hatcher, Notes on Basic 3-Manifold Topology,, Available from: , ().
|
[8] |
J. Morgan, Nonsingular Morse-Smale flows on 3-dimensional manifolds, Topology, 18 (1978), 41-53.
doi: 10.1016/0040-9383(79)90013-2. |
[9] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982. |
[10] |
M. Peixoto, On the classification of flows on 2 -manifolds, in Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971, Academic Press, (1973), 389-419. |
[11] |
A. Prishlyak, A complete topological invariant of Morse-Smale flows and handle decompositions of 3-manifolds, (Russian) Fundam. Prikl. Mat., 11 (2005), 185-196; translation in J. Math. Sci. (N. Y.), 144 (2007), 4492-4499.
doi: 10.1007/s10958-007-0287-y. |
[12] |
K. de Rezende, Smale flows on the three-sphere, Trans. Amer. Math. Soc, 303 (1987), 283-310.
doi: 10.1090/S0002-9947-1987-0896023-7. |
[13] |
D. Rolfsen, Knots and Links, Corrected reprint of the 1976 original. Mathematics Lecture Series, 7. Publish or Perish, Inc., Houston, TX, 1990. |
[14] |
C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, $2^{nd}$ edition, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1999. |
[15] |
K. Sasano, Links of closed orbits of nonsingular Morse-Smale flows, Proc. Amer. Math. Soc., 88 (1983), 727-734.
doi: 10.1090/S0002-9939-1983-0702309-0. |
[16] |
Y. Umanskii, Necessary and sufficient conditions for topological equivalence of three-dimensional dynamical Morse-Smale systems with a finite number of singular trajectories, (Russian)Mat. Sb., 181 (1990), 212-239; translation in Math. USSR-Sb., 69 (1991), 227-253. |
[17] |
M. Wada, Closed orbits of nonsingular Morse-Smale flows on $S^3$, J. Math. Soc. Japan, 41 (1989), 405-413.
doi: 10.2969/jmsj/04130405. |
[18] |
K. Yano, The homotopy class of nonsingular Morse-Smale vector fields on 3 -manifolds, Invent. Math., 80 (1985), 435-451.
doi: 10.1007/BF01388724. |
[19] |
B. Yu, The templates of non-singular Smale flows on three manifolds, Ergodic Theory Dynam. Systems, 32 (2012), 1137-1155.
doi: 10.1017/S0143385711000150. |
[20] |
B. Yu, Lyapunov graphs of nonsingular Smale flows on $S^1 \times S^2$, Trans. Amer. Math. Soc., 365 (2013), 767-783.
doi: 10.1090/S0002-9947-2012-05636-4. |
[21] |
B. Yu, A note on homotopy classes of nonsingular verctor fields on $S^3$, C. R. Math. Acad. Sci. Paris, 352 (2014), 351-355.
doi: 10.1016/j.crma.2014.01.016. |
[1] |
Bin Yu. Regular level sets of Lyapunov graphs of nonsingular Smale flows on 3-manifolds. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1277-1290. doi: 10.3934/dcds.2011.29.1277 |
[2] |
Ming-Chia Li. Stability of parameterized Morse-Smale gradient-like flows. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1073-1077. doi: 10.3934/dcds.2003.9.1073 |
[3] |
Vladislav Kibkalo, Tomoo Yokoyama. Topological characterizations of Morse-Smale flows on surfaces and generic non-Morse-Smale flows. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022072 |
[4] |
Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155 |
[5] |
Robert W. Ghrist. Flows on $S^3$ supporting all links as orbits. Electronic Research Announcements, 1995, 1: 91-97. |
[6] |
Arnaud Goullet, Shaun Harker, Konstantin Mischaikow, William D. Kalies, Dinesh Kasti. Efficient computation of Lyapunov functions for Morse decompositions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2419-2451. doi: 10.3934/dcdsb.2015.20.2419 |
[7] |
A. Procacci, Benedetto Scoppola. Convergent expansions for random cluster model with $q>0$ on infinite graphs. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1145-1178. doi: 10.3934/cpaa.2008.7.1145 |
[8] |
Wael Bahsoun, Benoît Saussol. Linear response in the intermittent family: Differentiation in a weighted $C^0$-norm. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6657-6668. doi: 10.3934/dcds.2016089 |
[9] |
Konstantin Mischaikow, Marian Mrozek, Frank Weilandt. Discretization strategies for computing Conley indices and Morse decompositions of flows. Journal of Computational Dynamics, 2016, 3 (1) : 1-16. doi: 10.3934/jcd.2016001 |
[10] |
A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121. |
[11] |
Qianying Xiao, Zuohuan Zheng. $C^1$ weak Palis conjecture for nonsingular flows. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 1809-1832. doi: 10.3934/dcds.2018074 |
[12] |
Keith Burns, Katrin Gelfert. Lyapunov spectrum for geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1841-1872. doi: 10.3934/dcds.2014.34.1841 |
[13] |
Shin Kiriki, Ming-Chia Li, Teruhiko Soma. Geometric Lorenz flows with historic behavior. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 7021-7028. doi: 10.3934/dcds.2016105 |
[14] |
Geonho Lee, Sangdong Kim, Young-Sam Kwon. Large time behavior for the full compressible magnetohydrodynamic flows. Communications on Pure and Applied Analysis, 2012, 11 (3) : 959-971. doi: 10.3934/cpaa.2012.11.959 |
[15] |
Shan Ma, Chunyou Sun. Long-time behavior for a class of weighted equations with degeneracy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1889-1902. doi: 10.3934/dcds.2020098 |
[16] |
Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929 |
[17] |
Young-Pil Choi, Cristina Pignotti. Emergent behavior of Cucker-Smale model with normalized weights and distributed time delays. Networks and Heterogeneous Media, 2019, 14 (4) : 789-804. doi: 10.3934/nhm.2019032 |
[18] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[19] |
Katrin Gelfert. Non-hyperbolic behavior of geodesic flows of rank 1 surfaces. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 521-551. doi: 10.3934/dcds.2019022 |
[20] |
Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]