Citation: |
[1] |
D. Asimov, Round handles and non-singular Morse-Smale flows, Ann. of Math. (2), 102 (1975), 41-54.doi: 10.2307/1970972. |
[2] |
D. Asimov, Homotopy of non-singular vector fields to structurally stable ones, Ann. of Math. (2), 102 (1975), 55-65.doi: 10.2307/1970973. |
[3] |
C. Bonatti, V. Grines and R. Langevin, Dynamical systems in dimension 2 and 3: conjugacy invariants and classification, in The geometry of differential equations and dynamical systems, Comput. Appl. Math., 20 (2001), 11-50. |
[4] |
B. Campos and P. Vindel, NMS flows on $S^3$ with no heteroclinic trajectories connecting saddle orbits, J. Dynam. Differential Equations, 24 (2012), 181-196.doi: 10.1007/s10884-012-9247-4. |
[5] |
J. Franks, Nonsingular Smale flows on $S^{3}$, Topology, 24 (1985), 265-282.doi: 10.1016/0040-9383(85)90002-3. |
[6] |
V. Grines and O. Pochinka, Morse-Smale cascades on 3-manifolds, (Russian) Uspekhi Mat. Nauk, 68 (2013), 129-188; translation in Russian Math. Surveys, 68 (2013), 117-173. |
[7] |
A. Hatcher, Notes on Basic 3-Manifold Topology, Available from: http://www.math.cornell.edu/~hatcher/3M/3Mdownloads.html |
[8] |
J. Morgan, Nonsingular Morse-Smale flows on 3-dimensional manifolds, Topology, 18 (1978), 41-53.doi: 10.1016/0040-9383(79)90013-2. |
[9] |
J. Palis and W. de Melo, Geometric Theory of Dynamical Systems. An Introduction, Translated from the Portuguese by A. K. Manning, Springer-Verlag, New York-Berlin, 1982. |
[10] |
M. Peixoto, On the classification of flows on 2 -manifolds, in Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971, Academic Press, (1973), 389-419. |
[11] |
A. Prishlyak, A complete topological invariant of Morse-Smale flows and handle decompositions of 3-manifolds, (Russian) Fundam. Prikl. Mat., 11 (2005), 185-196; translation in J. Math. Sci. (N. Y.), 144 (2007), 4492-4499.doi: 10.1007/s10958-007-0287-y. |
[12] |
K. de Rezende, Smale flows on the three-sphere, Trans. Amer. Math. Soc, 303 (1987), 283-310.doi: 10.1090/S0002-9947-1987-0896023-7. |
[13] |
D. Rolfsen, Knots and Links, Corrected reprint of the 1976 original. Mathematics Lecture Series, 7. Publish or Perish, Inc., Houston, TX, 1990. |
[14] |
C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics, and Chaos, $2^{nd}$ edition, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1999. |
[15] |
K. Sasano, Links of closed orbits of nonsingular Morse-Smale flows, Proc. Amer. Math. Soc., 88 (1983), 727-734.doi: 10.1090/S0002-9939-1983-0702309-0. |
[16] |
Y. Umanskii, Necessary and sufficient conditions for topological equivalence of three-dimensional dynamical Morse-Smale systems with a finite number of singular trajectories, (Russian)Mat. Sb., 181 (1990), 212-239; translation in Math. USSR-Sb., 69 (1991), 227-253. |
[17] |
M. Wada, Closed orbits of nonsingular Morse-Smale flows on $S^3$, J. Math. Soc. Japan, 41 (1989), 405-413.doi: 10.2969/jmsj/04130405. |
[18] |
K. Yano, The homotopy class of nonsingular Morse-Smale vector fields on 3 -manifolds, Invent. Math., 80 (1985), 435-451.doi: 10.1007/BF01388724. |
[19] |
B. Yu, The templates of non-singular Smale flows on three manifolds, Ergodic Theory Dynam. Systems, 32 (2012), 1137-1155.doi: 10.1017/S0143385711000150. |
[20] |
B. Yu, Lyapunov graphs of nonsingular Smale flows on $S^1 \times S^2$, Trans. Amer. Math. Soc., 365 (2013), 767-783.doi: 10.1090/S0002-9947-2012-05636-4. |
[21] |
B. Yu, A note on homotopy classes of nonsingular verctor fields on $S^3$, C. R. Math. Acad. Sci. Paris, 352 (2014), 351-355.doi: 10.1016/j.crma.2014.01.016. |