February  2016, 36(2): 611-629. doi: 10.3934/dcds.2016.36.611

Time periodic solutions to Navier-Stokes-Korteweg system with friction

1. 

School of Mathematical Sciences, Xiamen University, Xiamen, Fujian 361005

2. 

School of Mathematical Sciences and Fujian Provincial Key Laboratory, on Mathematical Modeling and Scientific Computing, Xiamen University, Xiamen, 361005

Received  December 2013 Revised  March 2015 Published  August 2015

In this paper, the compressible Navier-Stokes-Korteweg system with friction is considered in $\mathbb{R}^3$. Via the linear analysis, we show the existence, uniqueness and time-asymptotic stability of the time periodic solution when a time periodic external force is taken into account. Our proof is based on a combination of the energy method and the contraction mapping theorem. In particular, this is the first paper that a time periodic solution can be obtained in the whole space $\mathbb{R}^3$ only under the suitable smallness condition of $H^{N-1}\cap L^1$--norm$(N\geq5)$ of time periodic external force.
Citation: Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions to Navier-Stokes-Korteweg system with friction. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 611-629. doi: 10.3934/dcds.2016.36.611
References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[3]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[4]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type,, it Math.Phys., (2012).   Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. Henri Poincare Anal. Nonlinear, 18 (2001), 97.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension,, Methods Appl. Anal., 20 (2013), 141.  doi: 10.4310/MAA.2013.v20.n2.a3.  Google Scholar

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85.  doi: 10.1137/S003614109223413X.  Google Scholar

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84.  doi: 10.1006/jmaa.1996.0069.  Google Scholar

[11]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, PhD thesis, (1983).   Google Scholar

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. Henri Poincare Anal. Nonlinear, 25 (2008), 679.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218.  doi: 10.1016/j.jmaa.2011.11.006.  Google Scholar

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.  doi: 10.1016/j.jde.2009.11.031.  Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[16]

Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153.  doi: 10.1016/j.na.2012.08.012.  Google Scholar

[17]

M. E. Taylor, Partial Differential Equations III,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4757-4187-2.  Google Scholar

[18]

S. Ukai, Time periodic solutions of Boltzmann equation,, Discrete Contin. Dynam. Systems, 14 (2006), 579.  doi: 10.3934/dcds.2006.14.579.  Google Scholar

[19]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution,, Analysis and Applications, 4 (2006), 263.  doi: 10.1142/S0219530506000784.  Google Scholar

[20]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar

[21]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$,, Comm. Math. Sci., 12 (2014), 1437.  doi: 10.4310/CMS.2014.v12.n8.a4.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

D. Bresch, B. Desjardins and C. K. Lin, On some compressible fluid models: Korteweg, lubrication and shallow water systems,, Comm. Partial Differential Equations, 28 (2003), 843.  doi: 10.1081/PDE-120020499.  Google Scholar

[3]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamics equations,, Nonlinear Anal., 72 (2010), 4438.  doi: 10.1016/j.na.2010.02.019.  Google Scholar

[4]

Z. Z. Chen, Q. H. Xiao and H. J. Zhao, Time periodic solutions of compressible fluid models of Korteweg type,, it Math.Phys., (2012).   Google Scholar

[5]

R. Danchin and B. Desjardins, Existence of solutions for compressible fluid models of Korteweg type,, Ann. Inst. Henri Poincare Anal. Nonlinear, 18 (2001), 97.  doi: 10.1016/S0294-1449(00)00056-1.  Google Scholar

[6]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal decay estimates on the linearized Boltzmann equations with time dependent force and their applications,, Comm. Math. Phys., 277 (2008), 189.  doi: 10.1007/s00220-007-0366-4.  Google Scholar

[7]

B. Haspot, Existence of global weak solution for compressible fluid models of Korteweg type,, J. Math. Fluid Mech., 13 (2011), 223.  doi: 10.1007/s00021-009-0013-2.  Google Scholar

[8]

B. Haspot, Existence of global strong solution for the compressible Navier-Stokes system and the Korteweg system in two-dimension,, Methods Appl. Anal., 20 (2013), 141.  doi: 10.4310/MAA.2013.v20.n2.a3.  Google Scholar

[9]

H. Hattori and D. Li, Solutions for two dimensional system for materials of Korteweg type,, SIAM J. Math. Anal., 25 (1994), 85.  doi: 10.1137/S003614109223413X.  Google Scholar

[10]

H. Hattori and D. Li, Golobal solutions of a high dimensional system for Korteweg materials,, J. Math. Anal. Appl., 198 (1996), 84.  doi: 10.1006/jmaa.1996.0069.  Google Scholar

[11]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations of Magnetohydrodynamics,, PhD thesis, (1983).   Google Scholar

[12]

M. Kotschote, Strong solutions for a compressible fluid model of Korteweg type,, Ann. Inst. Henri Poincare Anal. Nonlinear, 25 (2008), 679.  doi: 10.1016/j.anihpc.2007.03.005.  Google Scholar

[13]

Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force,, J. Math. Anal. Appl., 388 (2012), 1218.  doi: 10.1016/j.jmaa.2011.11.006.  Google Scholar

[14]

H. F. Ma, S. Ukai and T. Yang, Time periodic solutions of compressible Navier-Stokes equations,, J. Differential Equations, 248 (2010), 2275.  doi: 10.1016/j.jde.2009.11.031.  Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[16]

Z. Tan and H. Q. Wang, Time periodic solutions of compressible magnetohydrodynamic equations,, Nonlinear Anal., 76 (2013), 153.  doi: 10.1016/j.na.2012.08.012.  Google Scholar

[17]

M. E. Taylor, Partial Differential Equations III,, Springer-Verlag, (1996).  doi: 10.1007/978-1-4757-4187-2.  Google Scholar

[18]

S. Ukai, Time periodic solutions of Boltzmann equation,, Discrete Contin. Dynam. Systems, 14 (2006), 579.  doi: 10.3934/dcds.2006.14.579.  Google Scholar

[19]

S. Ukai and T. Yang, The Boltzmann equation in the sapce $L^2\cap L^{\infty}_\beta$: global and time periodic solution,, Analysis and Applications, 4 (2006), 263.  doi: 10.1142/S0219530506000784.  Google Scholar

[20]

Y. J. Wang and Z. Tan, Optimal decay rates for the compressible fluid models of Korteweg type,, J. Math. Anal. Appl., 379 (2011), 256.  doi: 10.1016/j.jmaa.2011.01.006.  Google Scholar

[21]

X. Zhang and Z. Tan, Decay estimates of the non-isentropic compressible fluid models of Korteweg type in $\mathbbR^3$,, Comm. Math. Sci., 12 (2014), 1437.  doi: 10.4310/CMS.2014.v12.n8.a4.  Google Scholar

[1]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[2]

Zhong Tan, Xu Zhang, Huaqiao Wang. Asymptotic behavior of Navier-Stokes-Korteweg with friction in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2243-2259. doi: 10.3934/dcds.2014.34.2243

[3]

Tong Tang, Hongjun Gao. On the compressible Navier-Stokes-Korteweg equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2745-2766. doi: 10.3934/dcdsb.2016071

[4]

Jianwei Yang, Peng Cheng, Yudong Wang. Asymptotic limit of a Navier-Stokes-Korteweg system with density-dependent viscosity. Electronic Research Announcements, 2015, 22: 20-31. doi: 10.3934/era.2015.22.20

[5]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[6]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[7]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[8]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[9]

Grzegorz Karch, Xiaoxin Zheng. Time-dependent singularities in the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3039-3057. doi: 10.3934/dcds.2015.35.3039

[10]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[11]

Konstantinos Chrysafinos. Error estimates for time-discretizations for the velocity tracking problem for Navier-Stokes flows by penalty methods. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1077-1096. doi: 10.3934/dcdsb.2006.6.1077

[12]

Xiaopeng Zhao. Space-time decay estimates of solutions to liquid crystal system in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2019, 18 (1) : 1-13. doi: 10.3934/cpaa.2019001

[13]

Fritz Colonius, Guilherme Mazanti. Decay rates for stabilization of linear continuous-time systems with random switching. Mathematical Control & Related Fields, 2019, 9 (1) : 39-58. doi: 10.3934/mcrf.2019002

[14]

Petr Kučera. The time-periodic solutions of the Navier-Stokes equations with mixed boundary conditions. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 325-337. doi: 10.3934/dcdss.2010.3.325

[15]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[16]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[17]

Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615

[18]

Grzegorz Karch, Maria E. Schonbek, Tomas P. Schonbek. Singularities of certain finite energy solutions to the Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 189-206. doi: 10.3934/dcds.2020008

[19]

Marcello D'Abbicco, Ruy Coimbra Charão, Cleverson Roberto da Luz. Sharp time decay rates on a hyperbolic plate model under effects of an intermediate damping with a time-dependent coefficient. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2419-2447. doi: 10.3934/dcds.2016.36.2419

[20]

Huijiang Zhao. Large time decay estimates of solutions of nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 69-114. doi: 10.3934/dcds.2002.8.69

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]