January  2016, 36(1): 63-95. doi: 10.3934/dcds.2016.36.63

The general recombination equation in continuous time and its solution

1. 

Technische Fakultät, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany, Germany

2. 

Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld

Received  August 2014 Revised  March 2015 Published  June 2015

The process of recombination in population genetics, in its deterministic limit, leads to a nonlinear ODE in the Banach space of finite measures on a locally compact product space. It has an embedding into a larger family of nonlinear ODEs that permits a systematic analysis with lattice-theoretic methods for general partitions of finite sets. We discuss this type of system, reduce it to an equivalent finite-dimensional nonlinear problem, and establish a connection with an ancestral partitioning process, backward in time. We solve the finite-dimensional problem recursively for generic sets of parameters and briefly discuss the singular cases, and how to extend the solution to this situation.
Citation: Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63
References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997).  doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).   Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.   Google Scholar

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603.  doi: 10.1007/s11538-007-9270-5.  Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267.  doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3.  doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429.   Google Scholar

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371.  doi: 10.1007/s00285-013-0662-x.  Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., ().   Google Scholar

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.   Google Scholar

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).   Google Scholar

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1.  doi: 10.1006/tpbi.2000.1471.  Google Scholar

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115.  doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008).  doi: 10.1007/978-0-387-78168-6.  Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().   Google Scholar

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807.   Google Scholar

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986).  doi: 10.1063/1.3062516.  Google Scholar

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25.  doi: 10.1214/aoms/1177731313.  Google Scholar

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992).  doi: 10.1007/978-3-642-76211-6.  Google Scholar

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103.  doi: 10.1007/s002850050143.  Google Scholar

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).   Google Scholar

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201.  doi: 10.1007/s00285-004-0273-7.  Google Scholar

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007).  doi: 10.1007/978-3-540-73086-6_12.  Google Scholar

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028.  doi: 10.1109/9.935056.  Google Scholar

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997).   Google Scholar

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727.  doi: 10.1007/s00285-009-0277-4.  Google Scholar

show all references

References:
[1]

M. Aigner, Combinatorial Theory, reprint,, Springer, (1997).  doi: 10.1007/978-3-642-59101-3.  Google Scholar

[2]

H. Amann, Gewöhnliche Differentialgleichungen,, 2nd ed., (1995).   Google Scholar

[3]

E. Baake, Deterministic and stochastic aspects of single-crossover recombination,, in: Proceedings of the International Congress of Mathematicians, (2010), 3037.   Google Scholar

[4]

E. Baake and I. Herms, Single-crossover dynamics: Finite versus infinite populations,, Bull. Math. Biol., 70 (2008), 603.  doi: 10.1007/s11538-007-9270-5.  Google Scholar

[5]

M. Baake, Recombination semigroups on measure spaces,, Monatsh. Math., 146 (2005), 267.  doi: 10.1007/s00605-005-0326-z.  Google Scholar

[6]

M. Baake and E. Baake, An exactly solved model for mutation, recombination and selection,, Can. J. Math., 55 (2003), 3.  doi: 10.4153/CJM-2003-001-0.  Google Scholar

[7]

E. Baake and T. Hustedt, Moment closure in a Moran model with recombination,, Markov Proc. Rel. Fields, 17 (2011), 429.   Google Scholar

[8]

E. Baake and U. von Wangenheim, Single-crossover recombination and ancestral recombination trees,, J. Math. Biol., 68 (2014), 1371.  doi: 10.1007/s00285-013-0662-x.  Google Scholar

[9]

M. Baake and R. Speicher, in, preparation., ().   Google Scholar

[10]

J. H. Bennett, On the theory of random mating,, Ann. Human Gen., 18 (1954), 311.   Google Scholar

[11]

R. Bürger, The Mathematical Theory of Selection, Recombination and Mutation,, Wiley, (2000).   Google Scholar

[12]

K. J. Dawson, The decay of linkage disequilibrium under random union of gametes: How to calculate Bennett's principal components,, Theor. Popul. Biol., 58 (2000), 1.  doi: 10.1006/tpbi.2000.1471.  Google Scholar

[13]

K. J. Dawson, The evolution of a population under recombination: How to linearise the dynamics,, Lin. Alg. Appl., 348 (2002), 115.  doi: 10.1016/S0024-3795(01)00586-9.  Google Scholar

[14]

R. Durrett, Probability Models for DNA Sequence Evolution,, 2nd ed., (2008).  doi: 10.1007/978-0-387-78168-6.  Google Scholar

[15]

M. Esser, S. Probst and E. Baake, Partitioning, duality, and linkage disequilibria in the Moran model with recombination,, submitted, ().   Google Scholar

[16]

W. J. Ewens and G. Thomson, Properties of equilibria in multi-locus genetic systems,, Genetics, 87 (1977), 807.   Google Scholar

[17]

W. Feller, An Introduction to Probability Theory and Its Applications,, Vol. I, (1986).  doi: 10.1063/1.3062516.  Google Scholar

[18]

H. Geiringer, On the probability theory of linkage in Mendelian heredity,, Ann. Math. Stat., 15 (1944), 25.  doi: 10.1214/aoms/1177731313.  Google Scholar

[19]

Y. Lyubich, Mathematical Structures in Population Genetics,, Springer, (1992).  doi: 10.1007/978-3-642-76211-6.  Google Scholar

[20]

T. Nagylaki, J. Hofbauer and P. Brunovski, Convergence of multilocus systems under weak epistasis or weak selection,, J. Math. Biol., 38 (1999), 103.  doi: 10.1007/s002850050143.  Google Scholar

[21]

J. R. Norris, Markov Chains,, Cambridge University Press, (1998).   Google Scholar

[22]

O. Redner and M. Baake, Unequal crossover dynamics in discrete and continuous time,, J. Math. Biol., 49 (2004), 201.  doi: 10.1007/s00285-004-0273-7.  Google Scholar

[23]

N. J. A. Sloane, The On-line encyclopedia of integer sequences,, Lecture Notes in Computer Science, 4573 (2007).  doi: 10.1007/978-3-540-73086-6_12.  Google Scholar

[24]

E. D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction,, IEEE Trans. Automatic Control, 46 (2001), 1028.  doi: 10.1109/9.935056.  Google Scholar

[25]

E. Spiegel and C. J. O'Donnell, Incidence Algebras,, Marcel Dekker, (1997).   Google Scholar

[26]

U. von Wangenheim, E. Baake and M. Baake, Single-crossover recombination in discrete time,, J. Math. Biol., 60 (2010), 727.  doi: 10.1007/s00285-009-0277-4.  Google Scholar

[1]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[2]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[3]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[6]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[7]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[8]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[9]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[10]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[11]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[12]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[13]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[14]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[15]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[18]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[19]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[20]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (76)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]