-
Previous Article
Rotating periodic solutions of second order dissipative dynamical systems
- DCDS Home
- This Issue
-
Next Article
Time periodic solutions to Navier-Stokes-Korteweg system with friction
Small perturbation of a semilinear pseudo-parabolic equation
1. | School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024 |
2. | School of Math. Sci., South China Normal Univ., Guangzhou 510631 |
References:
[1] |
C. Bandle, H. A. Levine and Q. S. Zhang, Critical exponents of Fujita type for inhomogeneous parabolic equations and systems,, J. Math. Anal. Appl., 251 (2000), 624.
doi: 10.1006/jmaa.2000.7035. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.
doi: 10.1098/rsta.1972.0032. |
[3] |
Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations,, J. Differential Equations, 246 (2009), 4568.
doi: 10.1016/j.jde.2009.03.021. |
[4] |
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures,, Z. Angew. Math. Phys., 19 (1968), 614.
doi: 10.1007/BF01594969. |
[5] |
C. J. van Duijn, L. A. Peletier and I. S. Pop, A new class of entropy solutions of the Buckley-Leverett equation,, SIAM J. Math. Anal., 39 (2007), 507.
doi: 10.1137/05064518X. |
[6] |
A. Hasan, O. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations,, Systems & Control Letters, 62 (2013), 63.
doi: 10.1016/j.sysconle.2012.10.009. |
[7] |
E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, The Cauchy problem for a Sobolev-type equation with power like nonlinearity,, Izv. Math., 69 (2005), 59.
doi: 10.1070/IM2005v069n01ABEH000521. |
[8] |
J. R. King and C. M. Cuesta, Small and waiting-time behavior of a Darcy flow model with a dynamic pressure saturation relation,, SIAM J. Appl. Math., 66 (2006), 1482.
doi: 10.1137/040610969. |
[9] |
A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equtions,, De Gruyter Series in Nonlinear Analysis and Applications 15, (2011).
doi: 10.1515/9783110255294. |
[10] |
A. Mikelic, A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure,, J. Differential Equations, 248 (2010), 1561.
doi: 10.1016/j.jde.2009.11.022. |
[11] |
J. Serrin and H. H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.
doi: 10.1007/BF02392645. |
[12] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations,, SIAM J. Math. Anal., 1 (1970), 1.
doi: 10.1137/0501001. |
[13] |
A. Terracina, Qualitative behavior of the two-phase entropy solution of a forward-backward parabolic problem,, SIAM J. Math. Anal., 43 (2011), 228.
doi: 10.1137/090778833. |
[14] |
T. W. Ting, Certain non-steady flows of second-order fluids,, Arch. Rational Mech. Anal., 14 (1963), 1.
|
[15] |
R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations,, J. Funct. Anal., 264 (2013), 2732.
doi: 10.1016/j.jfa.2013.03.010. |
[16] |
C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation,, J. Differential Equations, 253 (2012), 3286.
doi: 10.1016/j.jde.2012.09.001. |
[17] |
X. Z. Zeng, The critical exponents for the quasi-linear parabolic equations with inhomogeneous terms,, J. Math. Anal. Appl., 332 (2007), 1408.
doi: 10.1016/j.jmaa.2006.11.034. |
[18] |
X. Z. Zeng, Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations,, Nonlinear Anal., 66 (2007), 1290.
doi: 10.1016/j.na.2006.01.026. |
[19] |
Q. S. Zhang, A new critical phenomenon for semilinear parabolic problems,, J. Math. Anal. Appl., 219 (1998), 125.
doi: 10.1006/jmaa.1997.5825. |
[20] |
Q. S. Zhang, Blow up and global existence of solutions to an inhomogeneous parabolic system,, J. Differential Equations, 147 (1998), 155.
doi: 10.1006/jdeq.1998.3448. |
show all references
References:
[1] |
C. Bandle, H. A. Levine and Q. S. Zhang, Critical exponents of Fujita type for inhomogeneous parabolic equations and systems,, J. Math. Anal. Appl., 251 (2000), 624.
doi: 10.1006/jmaa.2000.7035. |
[2] |
T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47.
doi: 10.1098/rsta.1972.0032. |
[3] |
Y. Cao, J. X. Yin and C. P. Wang, Cauchy problems of semilinear pseudo-parabolic equations,, J. Differential Equations, 246 (2009), 4568.
doi: 10.1016/j.jde.2009.03.021. |
[4] |
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures,, Z. Angew. Math. Phys., 19 (1968), 614.
doi: 10.1007/BF01594969. |
[5] |
C. J. van Duijn, L. A. Peletier and I. S. Pop, A new class of entropy solutions of the Buckley-Leverett equation,, SIAM J. Math. Anal., 39 (2007), 507.
doi: 10.1137/05064518X. |
[6] |
A. Hasan, O. M. Aamo and B. Foss, Boundary control for a class of pseudo-parabolic differential equations,, Systems & Control Letters, 62 (2013), 63.
doi: 10.1016/j.sysconle.2012.10.009. |
[7] |
E. I. Kaikina, P. I. Naumkin and I. A. Shishmarev, The Cauchy problem for a Sobolev-type equation with power like nonlinearity,, Izv. Math., 69 (2005), 59.
doi: 10.1070/IM2005v069n01ABEH000521. |
[8] |
J. R. King and C. M. Cuesta, Small and waiting-time behavior of a Darcy flow model with a dynamic pressure saturation relation,, SIAM J. Appl. Math., 66 (2006), 1482.
doi: 10.1137/040610969. |
[9] |
A. B. Al'shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equtions,, De Gruyter Series in Nonlinear Analysis and Applications 15, (2011).
doi: 10.1515/9783110255294. |
[10] |
A. Mikelic, A global existence result for the equations describing unsaturated flow in porous media with dynamic capillary pressure,, J. Differential Equations, 248 (2010), 1561.
doi: 10.1016/j.jde.2009.11.022. |
[11] |
J. Serrin and H. H. Zou, Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities,, Acta Math., 189 (2002), 79.
doi: 10.1007/BF02392645. |
[12] |
R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations,, SIAM J. Math. Anal., 1 (1970), 1.
doi: 10.1137/0501001. |
[13] |
A. Terracina, Qualitative behavior of the two-phase entropy solution of a forward-backward parabolic problem,, SIAM J. Math. Anal., 43 (2011), 228.
doi: 10.1137/090778833. |
[14] |
T. W. Ting, Certain non-steady flows of second-order fluids,, Arch. Rational Mech. Anal., 14 (1963), 1.
|
[15] |
R. Z. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations,, J. Funct. Anal., 264 (2013), 2732.
doi: 10.1016/j.jfa.2013.03.010. |
[16] |
C. X. Yang, Y. Cao and S. N. Zheng, Second critical exponent and life span for pseudo-parabolic equation,, J. Differential Equations, 253 (2012), 3286.
doi: 10.1016/j.jde.2012.09.001. |
[17] |
X. Z. Zeng, The critical exponents for the quasi-linear parabolic equations with inhomogeneous terms,, J. Math. Anal. Appl., 332 (2007), 1408.
doi: 10.1016/j.jmaa.2006.11.034. |
[18] |
X. Z. Zeng, Blow-up results and global existence of positive solutions for the inhomogeneous evolution P-Laplacian equations,, Nonlinear Anal., 66 (2007), 1290.
doi: 10.1016/j.na.2006.01.026. |
[19] |
Q. S. Zhang, A new critical phenomenon for semilinear parabolic problems,, J. Math. Anal. Appl., 219 (1998), 125.
doi: 10.1006/jmaa.1997.5825. |
[20] |
Q. S. Zhang, Blow up and global existence of solutions to an inhomogeneous parabolic system,, J. Differential Equations, 147 (1998), 155.
doi: 10.1006/jdeq.1998.3448. |
[1] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[2] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[3] |
Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 583-621. doi: 10.3934/cpaa.2020282 |
[4] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[5] |
Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391 |
[6] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[7] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[8] |
Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052 |
[9] |
Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264 |
[10] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[11] |
Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216 |
[12] |
Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259 |
[13] |
Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299 |
[14] |
Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229 |
[15] |
Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322 |
[16] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[17] |
Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021007 |
[18] |
Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119 |
[19] |
Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312 |
[20] |
Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]