• Previous Article
    Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity
  • DCDS Home
  • This Issue
  • Next Article
    Smooth local solutions to Weingarten equations and $\sigma_k$-equations
February  2016, 36(2): 661-682. doi: 10.3934/dcds.2016.36.661

Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials

1. 

School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

Received  June 2014 Revised  January 2015 Published  August 2015

This article studies the initial boundary value problem for a class of semilinear edge-degenerate parabolic equations with singular potential term. By introducing a family of potential wells, we derive a threshold of the existence of global solutions with exponential decay, and the blow-up in finite time in both cases with low initial energy and critical initial energy.
Citation: Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661
References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration, J. Funct. Anal., 265 (2013), 2331-2356. doi: 10.1016/j.jfa.2013.07.013.

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349. doi: 10.1007/s11868-012-0046-9.

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Global Anal. Geom., 39 (2011), 27-43. doi: 10.1007/s10455-010-9226-0.

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities, Calc. Var. Partial Differential Equations, 43 (2012), 463-484. doi: 10.1007/s00526-011-0418-7.

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differential Equations, 252 (2012), 4200-4228. doi: 10.1016/j.jde.2011.12.009.

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differential Equations, 252 (2012), 4289-4314. doi: 10.1016/j.jde.2012.01.011.

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations, Journal of Functional Analysis, 266 (2014), 3815-3839. doi: 10.1016/j.jfa.2013.12.012.

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds, Math. Nachr., 285 (2012), 1370-1384.

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations, Oper. Theory Adv. Appl., 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, 33 (2008), 1996-2019. doi: 10.1080/03605300802402633.

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316. doi: 10.1016/j.jfa.2006.10.019.

[12]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994.

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations, Nonliear Anal., 64 (2006), 2665-2687. doi: 10.1016/j.na.2005.09.011.

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations, 16 (1991), 1615-1664. doi: 10.1080/03605309108820815.

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 3495-3502. doi: 10.1016/j.na.2007.09.035.

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205. doi: 10.1016/j.jmaa.2006.06.015.

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1980.

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integral Equations Operator Theory, 41 (2001), 93-114. doi: 10.1007/BF01202533.

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1998.

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements, Princeton Univ. Press, Princetion, 1983. doi: 10.1515/9781400854554.

show all references

References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration, J. Funct. Anal., 265 (2013), 2331-2356. doi: 10.1016/j.jfa.2013.07.013.

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349. doi: 10.1007/s11868-012-0046-9.

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Global Anal. Geom., 39 (2011), 27-43. doi: 10.1007/s10455-010-9226-0.

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities, Calc. Var. Partial Differential Equations, 43 (2012), 463-484. doi: 10.1007/s00526-011-0418-7.

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differential Equations, 252 (2012), 4200-4228. doi: 10.1016/j.jde.2011.12.009.

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differential Equations, 252 (2012), 4289-4314. doi: 10.1016/j.jde.2012.01.011.

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations, Journal of Functional Analysis, 266 (2014), 3815-3839. doi: 10.1016/j.jfa.2013.12.012.

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds, Math. Nachr., 285 (2012), 1370-1384.

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations, Oper. Theory Adv. Appl., 93, Birkhäuser Verlag, Basel, 1997. doi: 10.1007/978-3-0348-8900-1.

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, 33 (2008), 1996-2019. doi: 10.1080/03605300802402633.

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316. doi: 10.1016/j.jfa.2006.10.019.

[12]

V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994.

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations, Nonliear Anal., 64 (2006), 2665-2687. doi: 10.1016/j.na.2005.09.011.

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations, 16 (1991), 1615-1664. doi: 10.1080/03605309108820815.

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 3495-3502. doi: 10.1016/j.na.2007.09.035.

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205. doi: 10.1016/j.jmaa.2006.06.015.

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1980.

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172.

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integral Equations Operator Theory, 41 (2001), 93-114. doi: 10.1007/BF01202533.

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1998.

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements, Princeton Univ. Press, Princetion, 1983. doi: 10.1515/9781400854554.

[1]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

[2]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[3]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[4]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[5]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[6]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[7]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[8]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[9]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[10]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[11]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[12]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[13]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[14]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060

[15]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[16]

Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143

[17]

Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022006

[18]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[19]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[20]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (120)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]