-
Previous Article
Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity
- DCDS Home
- This Issue
-
Next Article
Smooth local solutions to Weingarten equations and $\sigma_k$-equations
Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials
1. | School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China |
References:
[1] |
M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration, J. Funct. Anal., 265 (2013), 2331-2356.
doi: 10.1016/j.jfa.2013.07.013. |
[2] |
H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.
doi: 10.1007/s11868-012-0046-9. |
[3] |
H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Global Anal. Geom., 39 (2011), 27-43.
doi: 10.1007/s10455-010-9226-0. |
[4] |
H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities, Calc. Var. Partial Differential Equations, 43 (2012), 463-484.
doi: 10.1007/s00526-011-0418-7. |
[5] |
H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differential Equations, 252 (2012), 4200-4228.
doi: 10.1016/j.jde.2011.12.009. |
[6] |
H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differential Equations, 252 (2012), 4289-4314.
doi: 10.1016/j.jde.2012.01.011. |
[7] |
H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations, Journal of Functional Analysis, 266 (2014), 3815-3839.
doi: 10.1016/j.jfa.2013.12.012. |
[8] |
H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds, Math. Nachr., 285 (2012), 1370-1384. |
[9] |
Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations, Oper. Theory Adv. Appl., 93, Birkhäuser Verlag, Basel, 1997.
doi: 10.1007/978-3-0348-8900-1. |
[10] |
S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, 33 (2008), 1996-2019.
doi: 10.1080/03605300802402633. |
[11] |
V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.
doi: 10.1016/j.jfa.2006.10.019. |
[12] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994. |
[13] |
Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations, Nonliear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[14] |
R. Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations, 16 (1991), 1615-1664.
doi: 10.1080/03605309108820815. |
[15] |
L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 3495-3502.
doi: 10.1016/j.na.2007.09.035. |
[16] |
L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.
doi: 10.1016/j.jmaa.2006.06.015. |
[17] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1980. |
[18] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172. |
[19] |
E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integral Equations Operator Theory, 41 (2001), 93-114.
doi: 10.1007/BF01202533. |
[20] |
B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1998. |
[21] |
J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements, Princeton Univ. Press, Princetion, 1983.
doi: 10.1515/9781400854554. |
show all references
References:
[1] |
M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration, J. Funct. Anal., 265 (2013), 2331-2356.
doi: 10.1016/j.jfa.2013.07.013. |
[2] |
H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329-349.
doi: 10.1007/s11868-012-0046-9. |
[3] |
H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents, Ann. Global Anal. Geom., 39 (2011), 27-43.
doi: 10.1007/s10455-010-9226-0. |
[4] |
H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities, Calc. Var. Partial Differential Equations, 43 (2012), 463-484.
doi: 10.1007/s00526-011-0418-7. |
[5] |
H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents, J. Differential Equations, 252 (2012), 4200-4228.
doi: 10.1016/j.jde.2011.12.009. |
[6] |
H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term, J. Differential Equations, 252 (2012), 4289-4314.
doi: 10.1016/j.jde.2012.01.011. |
[7] |
H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations, Journal of Functional Analysis, 266 (2014), 3815-3839.
doi: 10.1016/j.jfa.2013.12.012. |
[8] |
H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds, Math. Nachr., 285 (2012), 1370-1384. |
[9] |
Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations, Oper. Theory Adv. Appl., 93, Birkhäuser Verlag, Basel, 1997.
doi: 10.1007/978-3-0348-8900-1. |
[10] |
S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential, Comm. Partial Differential Equations, 33 (2008), 1996-2019.
doi: 10.1080/03605300802402633. |
[11] |
V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials, J. Funct. Anal., 250 (2007), 265-316.
doi: 10.1016/j.jfa.2006.10.019. |
[12] |
V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Mason-John Wiley, Paris, 1994. |
[13] |
Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations, Nonliear Anal., 64 (2006), 2665-2687.
doi: 10.1016/j.na.2005.09.011. |
[14] |
R. Mazzeo, Elliptic theory of differential edge operators, I, Comm. Partial Differential Equations, 16 (1991), 1615-1664.
doi: 10.1080/03605309108820815. |
[15] |
L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems, Nonlinear Anal. TMA, 69 (2008), 3495-3502.
doi: 10.1016/j.na.2007.09.035. |
[16] |
L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions, J. Math. Anal. Appl., 328 (2007), 1196-1205.
doi: 10.1016/j.jmaa.2006.06.015. |
[17] |
M. Reed and B. Simon, Methods of Modern Mathematical Physics, Academic Press, 1980. |
[18] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148-172. |
[19] |
E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces, Integral Equations Operator Theory, 41 (2001), 93-114.
doi: 10.1007/BF01202533. |
[20] |
B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators, J. Wiley, Chichester, 1998. |
[21] |
J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements, Princeton Univ. Press, Princetion, 1983.
doi: 10.1515/9781400854554. |
[1] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
[2] |
Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042 |
[3] |
Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 |
[4] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[5] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[6] |
Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 |
[7] |
Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111 |
[8] |
Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355 |
[9] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[10] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[11] |
Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051 |
[12] |
Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure and Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 |
[13] |
Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905 |
[14] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4847-4885. doi: 10.3934/dcds.2021060 |
[15] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[16] |
Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143 |
[17] |
Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022006 |
[18] |
José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43 |
[19] |
Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 |
[20] |
Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]