• Previous Article
    Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity
  • DCDS Home
  • This Issue
  • Next Article
    Smooth local solutions to Weingarten equations and $\sigma_k$-equations
February  2016, 36(2): 661-682. doi: 10.3934/dcds.2016.36.661

Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials

1. 

School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

Received  June 2014 Revised  January 2015 Published  August 2015

This article studies the initial boundary value problem for a class of semilinear edge-degenerate parabolic equations with singular potential term. By introducing a family of potential wells, we derive a threshold of the existence of global solutions with exponential decay, and the blow-up in finite time in both cases with low initial energy and critical initial energy.
Citation: Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661
References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration,, J. Funct. Anal., 265 (2013), 2331.  doi: 10.1016/j.jfa.2013.07.013.  Google Scholar

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration,, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents,, Ann. Global Anal. Geom., 39 (2011), 27.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities,, Calc. Var. Partial Differential Equations, 43 (2012), 463.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents,, J. Differential Equations, 252 (2012), 4200.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term,, J. Differential Equations, 252 (2012), 4289.  doi: 10.1016/j.jde.2012.01.011.  Google Scholar

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations,, Journal of Functional Analysis, 266 (2014), 3815.  doi: 10.1016/j.jfa.2013.12.012.  Google Scholar

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds,, Math. Nachr., 285 (2012), 1370.   Google Scholar

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations,, Oper. Theory Adv. Appl., 93 (1997).  doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential,, Comm. Partial Differential Equations, 33 (2008), 1996.  doi: 10.1080/03605300802402633.  Google Scholar

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, J. Funct. Anal., 250 (2007), 265.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization,, The Multiplier Method, (1994).   Google Scholar

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations,, Nonliear Anal., 64 (2006), 2665.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I,, Comm. Partial Differential Equations, 16 (1991), 1615.  doi: 10.1080/03605309108820815.  Google Scholar

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Anal. TMA, 69 (2008), 3495.  doi: 10.1016/j.na.2007.09.035.  Google Scholar

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions,, J. Math. Anal. Appl., 328 (2007), 1196.  doi: 10.1016/j.jmaa.2006.06.015.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Academic Press, (1980).   Google Scholar

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, Arch. Ration. Mech. Anal., 30 (1968), 148.   Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces,, Integral Equations Operator Theory, 41 (2001), 93.  doi: 10.1007/BF01202533.  Google Scholar

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators,, J. Wiley, (1998).   Google Scholar

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements,, Princeton Univ. Press, (1983).  doi: 10.1515/9781400854554.  Google Scholar

show all references

References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration,, J. Funct. Anal., 265 (2013), 2331.  doi: 10.1016/j.jfa.2013.07.013.  Google Scholar

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration,, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329.  doi: 10.1007/s11868-012-0046-9.  Google Scholar

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents,, Ann. Global Anal. Geom., 39 (2011), 27.  doi: 10.1007/s10455-010-9226-0.  Google Scholar

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities,, Calc. Var. Partial Differential Equations, 43 (2012), 463.  doi: 10.1007/s00526-011-0418-7.  Google Scholar

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents,, J. Differential Equations, 252 (2012), 4200.  doi: 10.1016/j.jde.2011.12.009.  Google Scholar

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term,, J. Differential Equations, 252 (2012), 4289.  doi: 10.1016/j.jde.2012.01.011.  Google Scholar

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations,, Journal of Functional Analysis, 266 (2014), 3815.  doi: 10.1016/j.jfa.2013.12.012.  Google Scholar

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds,, Math. Nachr., 285 (2012), 1370.   Google Scholar

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations,, Oper. Theory Adv. Appl., 93 (1997).  doi: 10.1007/978-3-0348-8900-1.  Google Scholar

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential,, Comm. Partial Differential Equations, 33 (2008), 1996.  doi: 10.1080/03605300802402633.  Google Scholar

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, J. Funct. Anal., 250 (2007), 265.  doi: 10.1016/j.jfa.2006.10.019.  Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization,, The Multiplier Method, (1994).   Google Scholar

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations,, Nonliear Anal., 64 (2006), 2665.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I,, Comm. Partial Differential Equations, 16 (1991), 1615.  doi: 10.1080/03605309108820815.  Google Scholar

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Anal. TMA, 69 (2008), 3495.  doi: 10.1016/j.na.2007.09.035.  Google Scholar

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions,, J. Math. Anal. Appl., 328 (2007), 1196.  doi: 10.1016/j.jmaa.2006.06.015.  Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Academic Press, (1980).   Google Scholar

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, Arch. Ration. Mech. Anal., 30 (1968), 148.   Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces,, Integral Equations Operator Theory, 41 (2001), 93.  doi: 10.1007/BF01202533.  Google Scholar

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators,, J. Wiley, (1998).   Google Scholar

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements,, Princeton Univ. Press, (1983).  doi: 10.1515/9781400854554.  Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[5]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[6]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[7]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[8]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[11]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[14]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[15]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[16]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[20]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (67)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]