• Previous Article
    The Dirichlet problem for Hessian type elliptic equations on Riemannian manifolds
  • DCDS Home
  • This Issue
  • Next Article
    Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials
February  2016, 36(2): 683-699. doi: 10.3934/dcds.2016.36.683

Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity

1. 

Department of Mathematics, Huazhong Normal University, Wuhan 430079

2. 

Department of Mathematics and Statistics, Wright State University, Dayton, OH 45435, USA, United States

3. 

Department of Mathematics, Huazhong Normal University, Wuhan, 430079

Received  July 2014 Revised  February 2015 Published  August 2015

In this paper, we study the existence of positive solution for the following p-Laplacain type equations with critical nonlinearity \begin{equation*} \left\{ \renewcommand{\arraystretch}{1.25} \begin{array}{ll} -\Delta_p u + V (x)|u|^{p-2}u = K(x)f(u)+P(x)|u|^{p^*-2}u, \quad x\in\mathbb{R}^N,\\ u \in \mathcal{D}^{1,p}(\mathbb{R}^N), \end{array} \right. \end{equation*} where $\Delta_p u = div(|\nabla u|^{p-2} \nabla u),\ 1 < p < N,\ p^* =\frac {Np}{N-p}$, $V(x)$, $K(x)$ are positive continuous functions which vanish at infinity, $f$ is a function with a subcritical growth, and $P(x)$ is a bounded, nonnegative continuous function. By working in the weighted Sobolev spaces, and using variational method, we prove that the given problem has at least one positive solution.
Citation: Yinbin Deng, Yi Li, Wei Shuai. Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 683-699. doi: 10.3934/dcds.2016.36.683
References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Diff. Eqns., 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Eur. Math. Soc., 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual varitional methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, Diff. Integ. Eqns., 18 (2005), 1321.   Google Scholar

[5]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure. Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

D. Bonheure and J. Van Schaftingen, Ground states for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, Annali Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar

[9]

F. Catrina, M. Furtado and M. Montenegro, Positive solutions for nonlinear elliptic equations with fast increasing weights,, Proc. Roy. Soc. Edinb. A, 137 (2007), 1157.  doi: 10.1017/S0308210506000795.  Google Scholar

[10]

Y. B. Deng, The existence and nodal character of the solutions in $\mathbbR^N$ for semilinear elliptic equation involving critical Sobolev exponent,, Acta Math. Sci., 9 (1989), 385.   Google Scholar

[11]

Y. B. Deng, L. Y. Jin and S. J. Peng, Solutions of Schrodinger Equations with Inverse Square Potential and Critical Nonlinearity,, J. Diff. Eqns., 253 (2012), 1376.  doi: 10.1016/j.jde.2012.05.009.  Google Scholar

[12]

Y. B. Deng, Z. H. Guo and G. S. Wang, Nodal solutions for $p-$Laplace equations with critical growth,, Nonlin. Analysis, 54 (2003), 1121.  doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar

[13]

Y. B. Deng and Y. Li, On the existence of multiple positive solutions for a semilinear problem in exterior domains,, J. Diff. Eqns., 181 (2002), 197.  doi: 10.1006/jdeq.2001.4077.  Google Scholar

[14]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of heat equations,, Nonlin Analysis, 11 (1987), 1103.  doi: 10.1016/0362-546X(87)90001-0.  Google Scholar

[15]

M. F. Furtado, J. P. P. da Silva and M. S. Xavier, Multiplicity of self-similar solutions for a critical equation,, J. Diff. Eqns., 254 (2013), 2732.  doi: 10.1016/j.jde.2013.01.007.  Google Scholar

[16]

G. B. Li, The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domain,, Acta Math. Sci., 14 (1994), 64.   Google Scholar

[17]

P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part I,, Rev. Mat. Iber., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[18]

P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part II,, Rev. Mat. Iber., 1 (1985), 45.  doi: 10.4171/RMI/12.  Google Scholar

[19]

B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar

[20]

J. Serrin, Local behavior of solutions of quasilinear equations,, Acta. Math., 111 (1964), 247.  doi: 10.1007/BF02391014.  Google Scholar

[21]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[22]

W. A. Strauss, Existence of solitary in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[23]

C. A. Swanson and L. S. Yu., Critical p-laplacian problems in $\mathbbR^N$,, Annali Mat. Pura Appl., 169 (1995), 233.  doi: 10.1007/BF01759355.  Google Scholar

[24]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Diff. Eqns., 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[25]

M. Willem, Minimax Theorems,, Progress in Nonlinear Differential Equations and Their Applications, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[26]

X. P. Zhu, Nontrivial solution of quasilinear elliptic equation involving critical Sobolev exponent,, Sci. Sinica., 31 (1990), 1161.   Google Scholar

show all references

References:
[1]

C. O. Alves and M. A. S. Souto, Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Diff. Eqns., 254 (2013), 1977.  doi: 10.1016/j.jde.2012.11.013.  Google Scholar

[2]

A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly,, J. Eur. Math. Soc., 7 (2005), 117.  doi: 10.4171/JEMS/24.  Google Scholar

[3]

A. Ambrosetti and P. H. Rabinowitz, Dual varitional methods in critical point theory and applications,, J. Funct. Analysis, 14 (1973), 349.  doi: 10.1016/0022-1236(73)90051-7.  Google Scholar

[4]

A. Ambrosetti and Z. Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials,, Diff. Integ. Eqns., 18 (2005), 1321.   Google Scholar

[5]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proc. Amer. Math. Soc., 88 (1983), 486.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[6]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state,, Arch. Ration. Mech. Anal., 82 (1983), 313.  doi: 10.1007/BF00250555.  Google Scholar

[7]

H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents,, Commun. Pure. Appl. Math., 36 (1983), 437.  doi: 10.1002/cpa.3160360405.  Google Scholar

[8]

D. Bonheure and J. Van Schaftingen, Ground states for the nonlinear Schrödinger equation with potentials vanishing at infinitly,, Annali Mat. Pura Appl., 189 (2010), 273.  doi: 10.1007/s10231-009-0109-6.  Google Scholar

[9]

F. Catrina, M. Furtado and M. Montenegro, Positive solutions for nonlinear elliptic equations with fast increasing weights,, Proc. Roy. Soc. Edinb. A, 137 (2007), 1157.  doi: 10.1017/S0308210506000795.  Google Scholar

[10]

Y. B. Deng, The existence and nodal character of the solutions in $\mathbbR^N$ for semilinear elliptic equation involving critical Sobolev exponent,, Acta Math. Sci., 9 (1989), 385.   Google Scholar

[11]

Y. B. Deng, L. Y. Jin and S. J. Peng, Solutions of Schrodinger Equations with Inverse Square Potential and Critical Nonlinearity,, J. Diff. Eqns., 253 (2012), 1376.  doi: 10.1016/j.jde.2012.05.009.  Google Scholar

[12]

Y. B. Deng, Z. H. Guo and G. S. Wang, Nodal solutions for $p-$Laplace equations with critical growth,, Nonlin. Analysis, 54 (2003), 1121.  doi: 10.1016/S0362-546X(03)00129-9.  Google Scholar

[13]

Y. B. Deng and Y. Li, On the existence of multiple positive solutions for a semilinear problem in exterior domains,, J. Diff. Eqns., 181 (2002), 197.  doi: 10.1006/jdeq.2001.4077.  Google Scholar

[14]

M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of heat equations,, Nonlin Analysis, 11 (1987), 1103.  doi: 10.1016/0362-546X(87)90001-0.  Google Scholar

[15]

M. F. Furtado, J. P. P. da Silva and M. S. Xavier, Multiplicity of self-similar solutions for a critical equation,, J. Diff. Eqns., 254 (2013), 2732.  doi: 10.1016/j.jde.2013.01.007.  Google Scholar

[16]

G. B. Li, The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domain,, Acta Math. Sci., 14 (1994), 64.   Google Scholar

[17]

P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part I,, Rev. Mat. Iber., 1 (1985), 145.  doi: 10.4171/RMI/6.  Google Scholar

[18]

P. L. Lions, The concentration-compactness principle in calculus of variations, The limit case Part II,, Rev. Mat. Iber., 1 (1985), 45.  doi: 10.4171/RMI/12.  Google Scholar

[19]

B. Opic and A. Kufner, Hardy-Type Inequalities,, Pitman Research Notes in Mathematics Series, (1990).   Google Scholar

[20]

J. Serrin, Local behavior of solutions of quasilinear equations,, Acta. Math., 111 (1964), 247.  doi: 10.1007/BF02391014.  Google Scholar

[21]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities,, Trans. Amer. Math. Soc., 357 (2005), 2909.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[22]

W. A. Strauss, Existence of solitary in higher dimensions,, Commun. Math. Phys., 55 (1977), 149.  doi: 10.1007/BF01626517.  Google Scholar

[23]

C. A. Swanson and L. S. Yu., Critical p-laplacian problems in $\mathbbR^N$,, Annali Mat. Pura Appl., 169 (1995), 233.  doi: 10.1007/BF01759355.  Google Scholar

[24]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Diff. Eqns., 51 (1984), 126.  doi: 10.1016/0022-0396(84)90105-0.  Google Scholar

[25]

M. Willem, Minimax Theorems,, Progress in Nonlinear Differential Equations and Their Applications, (1996).  doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[26]

X. P. Zhu, Nontrivial solution of quasilinear elliptic equation involving critical Sobolev exponent,, Sci. Sinica., 31 (1990), 1161.   Google Scholar

[1]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[2]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

[3]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[4]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[5]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[6]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[7]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[8]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020298

[9]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[10]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[11]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[12]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-maxwell-kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020292

[13]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[14]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[15]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[16]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[17]

Lateef Olakunle Jolaoso, Maggie Aphane. Bregman subgradient extragradient method with monotone self-adjustment stepsize for solving pseudo-monotone variational inequalities and fixed point problems. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020178

[18]

Manuel del Pino, Monica Musso, Juncheng Wei, Yifu Zhou. Type Ⅱ finite time blow-up for the energy critical heat equation in $ \mathbb{R}^4 $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3327-3355. doi: 10.3934/dcds.2020052

[19]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[20]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]