• Previous Article
    $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II
  • DCDS Home
  • This Issue
  • Next Article
    Concentrating soliton solutions for quasilinear Schrödinger equations involving critical Sobolev exponents
February  2016, 36(2): 763-784. doi: 10.3934/dcds.2016.36.763

Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs

1. 

Department of Mathematics, Shandong University, Jinan, Shandong 250100, China, China

Received  June 2014 Published  August 2015

The present paper is devoted to studying the Hill-type formula and Krein-type trace formula for ODE, which is a continuous work of our previous work for Hamiltonian systems [5]. Hill-type formula and Krein-type trace formula are given by Hill at 1877 and Krein in 1950's separately. Recently, we find that there is a closed relationship between them [5]. In this paper, we will obtain the Hill-type formula for the $S$-periodic orbits of the first order ODEs. Such a kind of orbits is considered naturally to study the symmetric periodic and quasi-periodic solutions. By some similar idea in [5], based on the Hill-type formula, we will build up the Krein-type trace formula for the first order ODEs, which can be seen as a non-self-adjoint version of the case of Hamiltonian system.
Citation: Xijun Hu, Penghui Wang. Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 763-784. doi: 10.3934/dcds.2016.36.763
References:
[1]

S. V. Bolotin and D. V. Treschev, Hill's formula,, Russian Math. Surveys, 65 (2010), 191.  doi: 10.1070/RM2010v065n02ABEH004671.  Google Scholar

[2]

R. Denk, On Hilbert-Schmidt operators and determinants corresponding to periodic ODE systems,, Differential and integral operators (Regensburg, 102 (1998), 57.   Google Scholar

[3]

G. W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Cambridge, Wilson, 1877;, reprinted with some additions at Acta Math., 8 (1886), 1.  doi: 10.1007/BF02417081.  Google Scholar

[4]

X. Hu and Y. Ou, An Estimation for the Hyperbolic Region of Elliptic Lagrangian Solutions in the Planar Three-body Problem,, Regular and Chaotic Dynamics, 18 (2013), 732.  doi: 10.1134/S1560354713060129.  Google Scholar

[5]

X. Hu, Y. Ou and P. Wang, Trace formula for linear Hamiltonian systems with its applications to elliptic Lagrangian solutions,, Arch. Ration. Mech. Anal., 216 (2015), 313.  doi: 10.1007/s00205-014-0810-5.  Google Scholar

[6]

X. Hu and P. Wang, Conditional Fredholm determinant for the S -periodic orbits in Hamiltonian systems,, J. Funct. Anal., 261 (2011), 3247.  doi: 10.1016/j.jfa.2011.07.025.  Google Scholar

[7]

M. G. Krein, On criteria of stable boundedness of solutions of periodic canonical systems,, PrikL Mat. Mekh., 19 (1955), 641.   Google Scholar

[8]

M. G. Krein, The basic propositions of the theory of $\lambda$-zones of stability of a canonical system of linear differential equations with periodic coefficients, In Memoriam: A.A.Andronov,, Izdat.Akad.Nauk SSSR, (1955), 413.   Google Scholar

[9]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Math., (2002).  doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[10]

H. Poincaré, Sur les déterminants d'ordre infini,, Bull. Soc. math. France, 14 (1886), 77.   Google Scholar

[11]

B. Simon, Trace Ideals and Their Applications, Second edition. Mathematical Surveys and Monographs, 120., American Mathematical Society, (2005).   Google Scholar

show all references

References:
[1]

S. V. Bolotin and D. V. Treschev, Hill's formula,, Russian Math. Surveys, 65 (2010), 191.  doi: 10.1070/RM2010v065n02ABEH004671.  Google Scholar

[2]

R. Denk, On Hilbert-Schmidt operators and determinants corresponding to periodic ODE systems,, Differential and integral operators (Regensburg, 102 (1998), 57.   Google Scholar

[3]

G. W. Hill, On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon, Cambridge, Wilson, 1877;, reprinted with some additions at Acta Math., 8 (1886), 1.  doi: 10.1007/BF02417081.  Google Scholar

[4]

X. Hu and Y. Ou, An Estimation for the Hyperbolic Region of Elliptic Lagrangian Solutions in the Planar Three-body Problem,, Regular and Chaotic Dynamics, 18 (2013), 732.  doi: 10.1134/S1560354713060129.  Google Scholar

[5]

X. Hu, Y. Ou and P. Wang, Trace formula for linear Hamiltonian systems with its applications to elliptic Lagrangian solutions,, Arch. Ration. Mech. Anal., 216 (2015), 313.  doi: 10.1007/s00205-014-0810-5.  Google Scholar

[6]

X. Hu and P. Wang, Conditional Fredholm determinant for the S -periodic orbits in Hamiltonian systems,, J. Funct. Anal., 261 (2011), 3247.  doi: 10.1016/j.jfa.2011.07.025.  Google Scholar

[7]

M. G. Krein, On criteria of stable boundedness of solutions of periodic canonical systems,, PrikL Mat. Mekh., 19 (1955), 641.   Google Scholar

[8]

M. G. Krein, The basic propositions of the theory of $\lambda$-zones of stability of a canonical system of linear differential equations with periodic coefficients, In Memoriam: A.A.Andronov,, Izdat.Akad.Nauk SSSR, (1955), 413.   Google Scholar

[9]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Math., (2002).  doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[10]

H. Poincaré, Sur les déterminants d'ordre infini,, Bull. Soc. math. France, 14 (1886), 77.   Google Scholar

[11]

B. Simon, Trace Ideals and Their Applications, Second edition. Mathematical Surveys and Monographs, 120., American Mathematical Society, (2005).   Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021027

[5]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[6]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[7]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[10]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[11]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[12]

Yoshihisa Morita, Kunimochi Sakamoto. Turing type instability in a diffusion model with mass transport on the boundary. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3813-3836. doi: 10.3934/dcds.2020160

[13]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[14]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[15]

João Vitor da Silva, Hernán Vivas. Sharp regularity for degenerate obstacle type problems: A geometric approach. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1359-1385. doi: 10.3934/dcds.2020321

[16]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[19]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[20]

Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger Equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020392

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]