-
Previous Article
Existence, uniqueness, and stability of bubble solutions of a chemotaxis model
- DCDS Home
- This Issue
-
Next Article
Hill-type formula and Krein-type trace formula for $S$-periodic solutions in ODEs
$2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II
1. | LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China |
2. | Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong |
References:
[1] |
U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.
|
[2] |
J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311.
doi: 10.1007/s005260000075. |
[3] |
S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.
|
[4] |
B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.
|
[5] |
B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315.
doi: 10.1007/s005260050111. |
[6] |
S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.
|
[7] |
S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.
doi: 10.1007/BF01041068. |
[8] |
W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77.
doi: 10.1016/j.aim.2004.11.007. |
[9] |
K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101.
doi: 10.1007/s002291020101. |
[10] |
K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579.
doi: 10.1215/S0012-7094-99-09722-3. |
[11] |
M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231.
doi: 10.1017/S030821050003211X. |
[12] |
C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252.
doi: 10.3792/pjaa.70.252. |
[13] |
C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103.
doi: 10.1007/BF01189949. |
[14] |
I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).
|
[15] |
M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441.
doi: 10.1215/S0012-7094-93-07216-X. |
[16] |
M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.
|
[17] |
M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79.
doi: 10.1215/S0012-7094-94-07503-0. |
[18] |
M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.
|
[19] |
M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).
|
[20] |
M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.
|
[21] |
M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535.
doi: 10.1007/s00526-010-0375-6. |
[22] |
H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., (). Google Scholar |
[23] |
G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79.
doi: 10.1006/jfan.1994.1004. |
show all references
References:
[1] |
U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.
|
[2] |
J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311.
doi: 10.1007/s005260000075. |
[3] |
S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.
|
[4] |
B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.
|
[5] |
B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315.
doi: 10.1007/s005260050111. |
[6] |
S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.
|
[7] |
S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.
doi: 10.1007/BF01041068. |
[8] |
W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77.
doi: 10.1016/j.aim.2004.11.007. |
[9] |
K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101.
doi: 10.1007/s002291020101. |
[10] |
K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579.
doi: 10.1215/S0012-7094-99-09722-3. |
[11] |
M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231.
doi: 10.1017/S030821050003211X. |
[12] |
C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252.
doi: 10.3792/pjaa.70.252. |
[13] |
C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103.
doi: 10.1007/BF01189949. |
[14] |
I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).
|
[15] |
M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441.
doi: 10.1215/S0012-7094-93-07216-X. |
[16] |
M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.
|
[17] |
M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79.
doi: 10.1215/S0012-7094-94-07503-0. |
[18] |
M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.
|
[19] |
M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).
|
[20] |
M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.
|
[21] |
M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535.
doi: 10.1007/s00526-010-0375-6. |
[22] |
H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., (). Google Scholar |
[23] |
G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79.
doi: 10.1006/jfan.1994.1004. |
[1] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[2] |
Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020290 |
[3] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[4] |
Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165 |
[5] |
Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318 |
[6] |
Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021028 |
[7] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[8] |
Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388 |
[9] |
Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084 |
[10] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[11] |
Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158 |
[12] |
Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179 |
[13] |
Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163 |
[14] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[15] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[16] |
Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002 |
[17] |
Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001 |
[18] |
Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229 |
[19] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118 |
[20] |
Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020127 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]