February  2016, 36(2): 785-803. doi: 10.3934/dcds.2016.36.785

$2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II

1. 

LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, China

2. 

Department of Mathematics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received  April 2014 Published  August 2015

The existence of $2\pi$-periodic positive solutions of the equation $$ u'' + u = \displaystyle{\frac{a(x)}{u^3}} $$ is studied, where $a$ is a positive smooth $2\pi$-periodic function. Under some non-degenerate conditions on $a$, the existence of $2\pi$-periodic solutions to the equation is established.
Citation: Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785
References:
[1]

U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.   Google Scholar

[2]

J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[3]

S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.   Google Scholar

[4]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.   Google Scholar

[5]

B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[6]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.   Google Scholar

[7]

S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: 10.1007/BF01041068.  Google Scholar

[8]

W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[9]

K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101.  doi: 10.1007/s002291020101.  Google Scholar

[10]

K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579.  doi: 10.1215/S0012-7094-99-09722-3.  Google Scholar

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[12]

C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252.  doi: 10.3792/pjaa.70.252.  Google Scholar

[13]

C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103.  doi: 10.1007/BF01189949.  Google Scholar

[14]

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).   Google Scholar

[15]

M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441.  doi: 10.1215/S0012-7094-93-07216-X.  Google Scholar

[16]

M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.   Google Scholar

[17]

M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79.  doi: 10.1215/S0012-7094-94-07503-0.  Google Scholar

[18]

M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.   Google Scholar

[19]

M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).   Google Scholar

[20]

M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.   Google Scholar

[21]

M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[22]

H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., ().   Google Scholar

[23]

G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79.  doi: 10.1006/jfan.1994.1004.  Google Scholar

show all references

References:
[1]

U. Abresch and J. Langer, The normalized curved shortening flow and homothetic solutions,, J. Differential Geometry, 23 (1986), 175.   Google Scholar

[2]

J. Ai, K. S. Chou and J. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[3]

S. Altschuler, Singularities of the curve shrinking flow for space curves,, J. Differential Geometry, 34 (1991), 491.   Google Scholar

[4]

B. Andrews, Contraction of convex hypersurfaces by their affine normal,, J. Differential Geometry, 43 (1996), 207.   Google Scholar

[5]

B. Andrews, Evolving convex curves,, Calc. Var., 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[6]

S. Angenent, On the formation of singularities in the curve shortening flow,, J. Differential Geometry, 33 (1991), 601.   Google Scholar

[7]

S. Angenent and M. E. Gurtin, Multiphase thermodynamics with interfacial structure evolution of an isothermal interface,, Arch. Rational Mech. Anal., 108 (1989), 323.  doi: 10.1007/BF01041068.  Google Scholar

[8]

W. X. Chen, $L_p$-Minkowski problem with not necessarily positive data,, Adv. in Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[9]

K. S. Chou and L. Zhang, On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem,, Manuscripta Math., 102 (2000), 101.  doi: 10.1007/s002291020101.  Google Scholar

[10]

K. S. Chou and X. P. Zhu, Anisotropic flows for convex plane curves,, Duke Math. J., 97 (1999), 579.  doi: 10.1215/S0012-7094-99-09722-3.  Google Scholar

[11]

M. del Pino, R. Manásevich and A. Montero, $T$-periodic solutions for some second order differential equation with singularities,, Proc. Roy. Soc. Edinburgh, 120 (1992), 231.  doi: 10.1017/S030821050003211X.  Google Scholar

[12]

C. Dohmen and Y. Giga, Self-similar shrinking curves for anisotropic curvature flow equations,, Proc. Japan Acad., 70 (1994), 252.  doi: 10.3792/pjaa.70.252.  Google Scholar

[13]

C. Dohmen, Y. Giga and N. Mizoguchi, Existence of self-similar shrinking curves for anisotropic curvature flow equations,, Calc. Var., 4 (1996), 103.  doi: 10.1007/BF01189949.  Google Scholar

[14]

I. Fonseca and W. Gangbo, Degree Theory in Analysis and Applications,, Oxford Science Publications, (1995).   Google Scholar

[15]

M. E. Gage, Evolving plane curve by curvature in relative geometries,, Duke Math. J., 72 (1993), 441.  doi: 10.1215/S0012-7094-93-07216-X.  Google Scholar

[16]

M. E. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geometry, 23 (1986), 69.   Google Scholar

[17]

M. E. Gage and Y. Li, Evolving plane curve by curvature in relative geometries II,, Duke Math. J., 75 (1994), 79.  doi: 10.1215/S0012-7094-94-07503-0.  Google Scholar

[18]

M. Grayson, The heat equation shrinking embedded curves to round points,, J. Differential Geometry, 26 (1987), 285.   Google Scholar

[19]

M. E. Gurtin, Thermodynamics of Evolving Phase Boundaries in the Plane,, Clarendon Press, (1993).   Google Scholar

[20]

M.-Y. Jiang, Remarks on the 2-dimensional $L_p$-Minkowski problem,, Advanced Nonlinear Studies, 10 (2010), 297.   Google Scholar

[21]

M.-Y. Jiang, L. Wang and J. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var., 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[22]

H. Matano and J. Wei, On anisotropic curvature flow equations,, preprint., ().   Google Scholar

[23]

G. Sapiro and A. Tannenbaum, On affine plane curve evolution,, J. Funct. Anal., 119 (1994), 79.  doi: 10.1006/jfan.1994.1004.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Andreas Kreuml. The anisotropic fractional isoperimetric problem with respect to unconditional unit balls. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020290

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Vincent Ducrot, Pascal Frey, Alexandra Claisse. Levelsets and anisotropic mesh adaptation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 165-183. doi: 10.3934/dcds.2009.23.165

[5]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[6]

Chueh-Hsin Chang, Chiun-Chuan Chen, Chih-Chiang Huang. Traveling wave solutions of a free boundary problem with latent heat effect. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021028

[7]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[8]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[9]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[11]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[12]

Hongbo Guan, Yong Yang, Huiqing Zhu. A nonuniform anisotropic FEM for elliptic boundary layer optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1711-1722. doi: 10.3934/dcdsb.2020179

[13]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[14]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[15]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[16]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[17]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021001

[18]

Shin-Ichiro Ei, Masayasu Mimura, Tomoyuki Miyaji. Reflection of a self-propelling rigid disk from a boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 803-817. doi: 10.3934/dcdss.2020229

[19]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[20]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]