February  2016, 36(2): 805-832. doi: 10.3934/dcds.2016.36.805

Existence, uniqueness, and stability of bubble solutions of a chemotaxis model

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, China

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

3. 

Natural Science Research Center, Harbin Institute of Technology, Harbin 150080

4. 

Center for Financial Engineering, Soochow University, Suzhou, 215006, China

5. 

School of Mathematical Sciences, Shanxi University, Taiyuan, 030006

Received  June 2014 Revised  July 2014 Published  August 2015

Existence, uniqueness, and stability of Heaviside function like solutions of a Keller and Segel's minimal chemotaxis model are established when a chemotaxis parameter is large enough. Asymptotic expansions of the solution in terms of the large chemotaxis parameter are also derived.
Citation: Xin Lai, Xinfu Chen, Mingxin Wang, Cong Qin, Yajing Zhang. Existence, uniqueness, and stability of bubble solutions of a chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 805-832. doi: 10.3934/dcds.2016.36.805
References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[2]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, Journal of Mathematical Biology, 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[3]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence I,, Jahresbericht der Deutsche Mathematiker-Vereinigung, 105 (2003), 103.   Google Scholar

[4]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence II,, Jahresbericht der Deutsche Mathematiker-Vereinigung, 106 (2004), 51.   Google Scholar

[5]

Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity,, RIMS Kokyuroku, 1025 (1998), 44.   Google Scholar

[6]

K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in the 1D Keller-Segel model,, IMA Journal of Applied Mathematics, 72 (2007), 140.  doi: 10.1093/imamat/hxl028.  Google Scholar

[7]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[8]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, Journal of Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[9]

W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, Duke Mathematical Journal, 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[10]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly compactness theorem,, Journal of Mathematical Biology, 66 (2013), 1241.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[11]

Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model,, Journal of Mathematical Analysis and Applications, 420 (2014), 684.  doi: 10.1016/j.jmaa.2014.06.005.  Google Scholar

[12]

Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvaue problem arising from stability of a bubble steady state of the Keller-Segel's minimal chemotaxis model,, in preparation., ().   Google Scholar

show all references

References:
[1]

X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model,, Journal of Differential Equations, 257 (2014), 3102.  doi: 10.1016/j.jde.2014.06.008.  Google Scholar

[2]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, Journal of Mathematical Biology, 58 (2009), 183.  doi: 10.1007/s00285-008-0201-3.  Google Scholar

[3]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence I,, Jahresbericht der Deutsche Mathematiker-Vereinigung, 105 (2003), 103.   Google Scholar

[4]

D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence II,, Jahresbericht der Deutsche Mathematiker-Vereinigung, 106 (2004), 51.   Google Scholar

[5]

Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity,, RIMS Kokyuroku, 1025 (1998), 44.   Google Scholar

[6]

K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in the 1D Keller-Segel model,, IMA Journal of Applied Mathematics, 72 (2007), 140.  doi: 10.1093/imamat/hxl028.  Google Scholar

[7]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, Journal of Theoretical Biology, 26 (1970), 399.  doi: 10.1016/0022-5193(70)90092-5.  Google Scholar

[8]

C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system,, Journal of Differential Equations, 72 (1988), 1.  doi: 10.1016/0022-0396(88)90147-7.  Google Scholar

[9]

W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem,, Duke Mathematical Journal, 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[10]

X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly compactness theorem,, Journal of Mathematical Biology, 66 (2013), 1241.  doi: 10.1007/s00285-012-0533-x.  Google Scholar

[11]

Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model,, Journal of Mathematical Analysis and Applications, 420 (2014), 684.  doi: 10.1016/j.jmaa.2014.06.005.  Google Scholar

[12]

Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvaue problem arising from stability of a bubble steady state of the Keller-Segel's minimal chemotaxis model,, in preparation., ().   Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[3]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[8]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[15]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020275

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (2)

[Back to Top]