\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence, uniqueness, and stability of bubble solutions of a chemotaxis model

Abstract Related Papers Cited by
  • Existence, uniqueness, and stability of Heaviside function like solutions of a Keller and Segel's minimal chemotaxis model are established when a chemotaxis parameter is large enough. Asymptotic expansions of the solution in terms of the large chemotaxis parameter are also derived.
    Mathematics Subject Classification: 92C17, 35B30, 35B35, 35G50, 35P20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Chen, J. Hao, X. Wang, Y. Wu and Y. Zhang, Stability of spiky solution of the Keller-Segel's minimal chemotaxis model, Journal of Differential Equations, 257 (2014), 3102-3134.doi: 10.1016/j.jde.2014.06.008.

    [2]

    T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [3]

    D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence I, Jahresbericht der Deutsche Mathematiker-Vereinigung, 105 (2003), 103-165.

    [4]

    D. Horstmann, From 1970 until now: The Keller-Segal model in chemotaxis and its consequence II, Jahresbericht der Deutsche Mathematiker-Vereinigung, 106 (2004), 51-69.

    [5]

    Y. Kabeya and W.-M. Ni, Stationary Keller-Segel model with the linear sensitivity, RIMS Kokyuroku, 1025 (1998), 44-65.

    [6]

    K. Kang, T. Kolokolnikov and M. J. Ward, The stability and dynamics of a spike in the 1D Keller-Segel model, IMA Journal of Applied Mathematics, 72 (2007), 140-162.doi: 10.1093/imamat/hxl028.

    [7]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [8]

    C.-S. Lin, W.-M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, Journal of Differential Equations, 72 (1988), 1-27.doi: 10.1016/0022-0396(88)90147-7.

    [9]

    W.-M. Ni and I. Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Mathematical Journal, 70 (1993), 247-281.doi: 10.1215/S0012-7094-93-07004-4.

    [10]

    X. Wang and Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and Helly compactness theorem, Journal of Mathematical Biology, 66 (2013), 1241-1266.doi: 10.1007/s00285-012-0533-x.

    [11]

    Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvalue problem arising from spiky steady states of a minimal chemotaxis model, Journal of Mathematical Analysis and Applications, 420 (2014), 684-704.doi: 10.1016/j.jmaa.2014.06.005.

    [12]

    Y. Zhang, X. Chen, J. Hao, X. Lai and C. Qin, An eigenvaue problem arising from stability of a bubble steady state of the Keller-Segel's minimal chemotaxis model, in preparation.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(148) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return