• Previous Article
    A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$
  • DCDS Home
  • This Issue
  • Next Article
    Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces
February  2016, 36(2): 861-875. doi: 10.3934/dcds.2016.36.861

Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems

1. 

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419

2. 

Department of Mathematics and Information Technology, The Hong Kong Institute of Education, Rm 19A, 1/F, Block D4, 10, Lo Ping Road, Tai Po, New Territories, Hong Kong, China

Received  February 2014 Revised  February 2015 Published  August 2015

We prove the global-in-time existence of intermediate weak solutions of the equations of chemotaxis system in a bounded domain of $\mathbb{R}^2$ or $\mathbb{R}^3$ with initial chemical concentration small in $H^1$. No smallness assumption is imposed on the initial cell density which is in $L^2$. We first show that when the initial chemical concentration $c_0$ is small only in $H^1$ and $(n_0-n_\infty,c_0)$ is smooth, the classical solution exists for all time. Then we construct weak solutions as limits of smooth solutions corresponding to mollified initial data. Finally we determine the asymptotic behavior of the global solutions.
Citation: Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861
References:
[1]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces,, Mathematical and Computer Modelling, 47 (2008), 755. doi: 10.1016/j.mcm.2007.06.005. Google Scholar

[2]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Communications in Partial Differential Equations, 35 (2010), 1635. doi: 10.1080/03605302.2010.497199. Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Grad. Stud. Math., (1998). Google Scholar

[4]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046. Google Scholar

[5]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data,, J. Diff. Eqns., 120 (1995), 215. doi: 10.1006/jdeq.1995.1111. Google Scholar

[7]

D. Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions,, J. Math. Fluid Mech., 7 (2005), 315. doi: 10.1007/s00021-004-0123-9. Google Scholar

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow,, SIAM J. Math. Anal., 37 (2006), 1742. doi: 10.1137/040618059. Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[10]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis,, SIAM J. Appl. Math., 72 (2012), 417. doi: 10.1137/110829453. Google Scholar

[11]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Diff. Eqns., 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020. Google Scholar

[12]

M. Rascle, On a system of non linear strongly coupled partial differential equations arising in biology,, Lectures Notes in Math., 846 (1981), 290. Google Scholar

[13]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics,, Arch. Rational Mechanics Anal., 205 (2012), 27. doi: 10.1007/s00205-012-0498-3. Google Scholar

[14]

M. Winkler, Aggregation vs. global diffusive behavior in the higher- dimensional Keller-Segel model,, J. Diff. Eqns., 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[15]

M. Winkler, Global Large-Data Solutions in a Chemotaxis-(Navier)Stokes System Modeling Cellular Swimming in Fluid Drops,, Communications in Partial Differential Equations, 37 (2012), 319. doi: 10.1080/03605302.2011.591865. Google Scholar

show all references

References:
[1]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces,, Mathematical and Computer Modelling, 47 (2008), 755. doi: 10.1016/j.mcm.2007.06.005. Google Scholar

[2]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations,, Communications in Partial Differential Equations, 35 (2010), 1635. doi: 10.1080/03605302.2010.497199. Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, Grad. Stud. Math., (1998). Google Scholar

[4]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis,, SIAM J. Math. Anal., 33 (2002), 1330. doi: 10.1137/S0036141001385046. Google Scholar

[5]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data,, J. Diff. Eqns., 120 (1995), 215. doi: 10.1006/jdeq.1995.1111. Google Scholar

[7]

D. Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions,, J. Math. Fluid Mech., 7 (2005), 315. doi: 10.1007/s00021-004-0123-9. Google Scholar

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow,, SIAM J. Math. Anal., 37 (2006), 1742. doi: 10.1137/040618059. Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[10]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis,, SIAM J. Appl. Math., 72 (2012), 417. doi: 10.1137/110829453. Google Scholar

[11]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis,, J. Diff. Eqns., 250 (2011), 1310. doi: 10.1016/j.jde.2010.09.020. Google Scholar

[12]

M. Rascle, On a system of non linear strongly coupled partial differential equations arising in biology,, Lectures Notes in Math., 846 (1981), 290. Google Scholar

[13]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics,, Arch. Rational Mechanics Anal., 205 (2012), 27. doi: 10.1007/s00205-012-0498-3. Google Scholar

[14]

M. Winkler, Aggregation vs. global diffusive behavior in the higher- dimensional Keller-Segel model,, J. Diff. Eqns., 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[15]

M. Winkler, Global Large-Data Solutions in a Chemotaxis-(Navier)Stokes System Modeling Cellular Swimming in Fluid Drops,, Communications in Partial Differential Equations, 37 (2012), 319. doi: 10.1080/03605302.2011.591865. Google Scholar

[1]

Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

[2]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[3]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[4]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[5]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic & Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[6]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic & Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[7]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[8]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[9]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[10]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[11]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[12]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[13]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[14]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[15]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[16]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[17]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[18]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[19]

Youshan Tao, Michael Winkler. Global existence and boundedness in a Keller-Segel-Stokes model with arbitrary porous medium diffusion. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1901-1914. doi: 10.3934/dcds.2012.32.1901

[20]

Tian Xiang. On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4911-4946. doi: 10.3934/dcds.2014.34.4911

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]