• Previous Article
    Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces
  • DCDS Home
  • This Issue
  • Next Article
    A perturbation result for system of Schrödinger equations of Bose-Einstein condensates in $\mathbb{R}^3$
February  2016, 36(2): 861-875. doi: 10.3934/dcds.2016.36.861

Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems

1. 

Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242-1419

2. 

Department of Mathematics and Information Technology, The Hong Kong Institute of Education, Rm 19A, 1/F, Block D4, 10, Lo Ping Road, Tai Po, New Territories, Hong Kong, China

Received  February 2014 Revised  February 2015 Published  August 2015

We prove the global-in-time existence of intermediate weak solutions of the equations of chemotaxis system in a bounded domain of $\mathbb{R}^2$ or $\mathbb{R}^3$ with initial chemical concentration small in $H^1$. No smallness assumption is imposed on the initial cell density which is in $L^2$. We first show that when the initial chemical concentration $c_0$ is small only in $H^1$ and $(n_0-n_\infty,c_0)$ is smooth, the classical solution exists for all time. Then we construct weak solutions as limits of smooth solutions corresponding to mollified initial data. Finally we determine the asymptotic behavior of the global solutions.
Citation: Tong Li, Anthony Suen. Existence of intermediate weak solution to the equations of multi-dimensional chemotaxis systems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 861-875. doi: 10.3934/dcds.2016.36.861
References:
[1]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005.

[2]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Communications in Partial Differential Equations, 35 (2010), 1635-1673. doi: 10.1080/03605302.2010.497199.

[3]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.

[4]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[5]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254. doi: 10.1006/jdeq.1995.1111.

[7]

D. Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions, J. Math. Fluid Mech., 7 (2005), 315-338. doi: 10.1007/s00021-004-0123-9.

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760. doi: 10.1137/040618059.

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[10]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[11]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Diff. Eqns., 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[12]

M. Rascle, On a system of non linear strongly coupled partial differential equations arising in biology, Lectures Notes in Math., Springer, Berlin, 846 (1981), 290-298.

[13]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Anal., 205 (2012), 27-58. doi: 10.1007/s00205-012-0498-3.

[14]

M. Winkler, Aggregation vs. global diffusive behavior in the higher- dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[15]

M. Winkler, Global Large-Data Solutions in a Chemotaxis-(Navier)Stokes System Modeling Cellular Swimming in Fluid Drops, Communications in Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865.

show all references

References:
[1]

L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, 47 (2008), 755-764. doi: 10.1016/j.mcm.2007.06.005.

[2]

R. Duan, A. Lorz and P. Markowich, Global solutions to the coupled chemotaxis-fluid equations, Communications in Partial Differential Equations, 35 (2010), 1635-1673. doi: 10.1080/03605302.2010.497199.

[3]

L. C. Evans, Partial Differential Equations, Grad. Stud. Math., vol. 19, Amer. Math. Soc., Providence, RI, 1998.

[4]

M. A. Fontelos, A. Friedman and B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal., 33 (2002), 1330-1355. doi: 10.1137/S0036141001385046.

[5]

T. Hillen and K. Painter, A users' guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3.

[6]

D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional, compressible flow with discontinuous initial data, J. Diff. Eqns., 120 (1995), 215-254. doi: 10.1006/jdeq.1995.1111.

[7]

D. Hoff, Compressible Flow in a Half-Space with Navier Boundary Conditions, J. Math. Fluid Mech., 7 (2005), 315-338. doi: 10.1007/s00021-004-0123-9.

[8]

D. Hoff, Uniqueness of weak solutions of the Navier-Stokes equations of multidimensional compressible flow, SIAM J. Math. Anal., 37 (2006), 1742-1760. doi: 10.1137/040618059.

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415. doi: 10.1016/0022-5193(70)90092-5.

[10]

T. Li, R. H. Pan and K. Zhao, Global dynamics of a hyperbolic-parabolic model arising from chemotaxis, SIAM J. Appl. Math., 72 (2012), 417-443. doi: 10.1137/110829453.

[11]

T. Li and Z. A. Wang, Asymptotic nonlinear stability of traveling waves to conservation laws arising from chemotaxis, J. Diff. Eqns., 250 (2011), 1310-1333. doi: 10.1016/j.jde.2010.09.020.

[12]

M. Rascle, On a system of non linear strongly coupled partial differential equations arising in biology, Lectures Notes in Math., Springer, Berlin, 846 (1981), 290-298.

[13]

A. Suen and D. Hoff, Global low-energy weak solutions of the equations of 3D compressible magnetohydrodynamics, Arch. Rational Mechanics Anal., 205 (2012), 27-58. doi: 10.1007/s00205-012-0498-3.

[14]

M. Winkler, Aggregation vs. global diffusive behavior in the higher- dimensional Keller-Segel model, J. Diff. Eqns., 248 (2010), 2889-2905. doi: 10.1016/j.jde.2010.02.008.

[15]

M. Winkler, Global Large-Data Solutions in a Chemotaxis-(Navier)Stokes System Modeling Cellular Swimming in Fluid Drops, Communications in Partial Differential Equations, 37 (2012), 319-351. doi: 10.1080/03605302.2011.591865.

[1]

Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020

[2]

Sachiko Ishida, Tomomi Yokota. Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 345-354. doi: 10.3934/proc.2013.2013.345

[3]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

[4]

Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046

[5]

Qi Wang, Lu Zhang, Jingyue Yang, Jia Hu. Global existence and steady states of a two competing species Keller--Segel chemotaxis model. Kinetic and Related Models, 2015, 8 (4) : 777-807. doi: 10.3934/krm.2015.8.777

[6]

Federica Bubba, Benoit Perthame, Daniele Cerroni, Pasquale Ciarletta, Paolo Zunino. A coupled 3D-1D multiscale Keller-Segel model of chemotaxis and its application to cancer invasion. Discrete and Continuous Dynamical Systems - S, 2022, 15 (8) : 2053-2086. doi: 10.3934/dcdss.2022044

[7]

Wenting Cong, Jian-Guo Liu. A degenerate $p$-Laplacian Keller-Segel model. Kinetic and Related Models, 2016, 9 (4) : 687-714. doi: 10.3934/krm.2016012

[8]

Fanze Kong, Qi Wang. Stability, free energy and dynamics of multi-spikes in the minimal Keller-Segel model. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2499-2523. doi: 10.3934/dcds.2021200

[9]

Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141

[10]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[11]

Wenbin Lv, Qingyuan Wang. Global existence for a class of Keller-Segel models with signal-dependent motility and general logistic term. Evolution Equations and Control Theory, 2021, 10 (1) : 25-36. doi: 10.3934/eect.2020040

[12]

Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231

[13]

Qi Wang, Jingyue Yang, Lu Zhang. Time-periodic and stable patterns of a two-competing-species Keller-Segel chemotaxis model: Effect of cellular growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3547-3574. doi: 10.3934/dcdsb.2017179

[14]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete and Continuous Dynamical Systems, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[15]

Hai-Yang Jin, Zhi-An Wang. Global stabilization of the full attraction-repulsion Keller-Segel system. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3509-3527. doi: 10.3934/dcds.2020027

[16]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[17]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[18]

Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth. Mathematical Biosciences & Engineering, 2015, 12 (4) : 717-737. doi: 10.3934/mbe.2015.12.717

[19]

Vincent Calvez, Benoȋt Perthame, Shugo Yasuda. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic and Related Models, 2018, 11 (4) : 891-909. doi: 10.3934/krm.2018035

[20]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1497-1510. doi: 10.3934/dcdsb.2021099

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]