\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the classical solvability of near field reflector problems

Abstract Related Papers Cited by
  • In this paper we prove the existence of classical solutions to near field reflector problems, both for a point light source and for a parallel light source, with planar receivers. These problems involve Monge-Ampère type equations, subject to nonlinear oblique boundary conditions. Our approach builds on earlier work in the optimal transportation case by Trudinger and Wang and makes use of a recent extension of degree theory to oblique boundary conditions by Li, Liu and Nguyen.
    Mathematics Subject Classification: Primary: 35J60; Secondary: 78A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. A. Caffarelli, Boundary regularity of maps with convex potentials II, Ann. of Math., 144 (1996), 453-496.doi: 10.2307/2118564.

    [2]

    L. A. Caffarelli and V. Oliker, Weak solutions of one inverse problem in geometric optics, J. Math. Sci., 154 (2008), 37-46.doi: 10.1007/s10958-008-9152-x.

    [3]

    Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 8 (1991), 443-457.doi: 10.1016/j.anihpc.2007.03.001.

    [4]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-642-61798-0.

    [5]

    P. Guan and X.-J. Wang, On a Monge-Ampère equation arising in geometric optics, J. Diff. Geom., 48 (1998), 205-223.

    [6]

    C. Gutiérrez and F. Tournier, The parallel refractor, Developments in Mathematics, 28 (2013), 325-334.doi: 10.1007/978-1-4614-4075-8_14.

    [7]

    F. Jiang and N. S. Trudinger, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci., 4 (2014), 407-431.doi: 10.1007/s13373-014-0055-5.

    [8]

    A. Karakhanyan, Existence and regularity of the reflector surfaces in $\mathbbR^{n+1}$, Arch. Ration. Mech. Anal., 213 (2014), 833-885.doi: 10.1007/s00205-014-0743-z.

    [9]

    A. Karakhanyan and X.-J. Wang, On the reflector shape design, J. Diff. Geom., 84 (2010), 561-610.

    [10]

    S. Kochengin and V. Oliker, Determination of reflector surfaces from near-field scattering data, Inverse Problems, 13 (1997), 363-373.doi: 10.1088/0266-5611/13/2/011.

    [11]

    Y. Li, J. Liu and L. Nguyen, A degree theory for second order nonlinear elliptic operators with nonlinear oblique boundary conditions, preprint, Oberwolfach Report 40/2013:26-29.

    [12]

    G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations. Trans. Amer. Math. Soc., 295 (1986), 509-546.doi: 10.1090/S0002-9947-1986-0833695-6.

    [13]

    P.-L. Lions, N. S. Trudinger and J. Urbas, Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39 (1986), 539-563.doi: 10.1002/cpa.3160390405.

    [14]

    J. Liu, Light reflection is nonlinear optimization, Calc. Var. PDE, 46 (2013), 861-878.doi: 10.1007/s00526-012-0506-3.

    [15]

    X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Rat. Mech. Anal., 177 (2005), 151-183.doi: 10.1007/s00205-005-0362-9.

    [16]

    V. Oliker, Differential equations for design of a freeform single lens with prescribed irradiance properties, Optical Engineering, 53 (2014), 031301, 10pp.doi: 10.1117/1.OE.53.3.031302.

    [17]

    V. Oliker, J. Rubinstein and G. Wolansky, Supporting quadric method in optical design of freeform lenses for precise illumination control of a collimated light beam, Advances in Appl. Math., 62 (2015), 160-183.doi: 10.1016/j.aam.2014.09.009.

    [18]

    N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.doi: 10.1007/BF02393303.

    [19]

    N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type, Proc. Int. Cong. Math., Madrid, 3 (2006), 291-301.

    [20]

    N. S. Trudinger, On the prescribed Jacobian equation, Gakuto Intl. Series, Math. Sci. Appl., Proc. Intl. Conf. for the 25th Anniversary of Viscosity Solutions, XX (2008), 243-255.

    [21]

    N. S. Trudinger, On the local theory of prescribed Jacobian equations, Discrete Contin. Dyn. Syst., 34 (2014), 1663-1681.doi: 10.3934/dcds.2014.34.1663.

    [22]

    N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143-174.

    [23]

    J. Urbas, On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math., 487 (1997), 115-124.doi: 10.1515/crll.1997.487.115.

    [24]

    J. Urbas, Mass Transfer Problems, Lecture Notes, Univ. of Bonn, 1998.

    [25]

    J. Urbas, Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. PDE, 7 (1998), 19-39.doi: 10.1007/s005260050097.

    [26]

    G. von Nessi, On the second boundary value problem for a class of modified-Hessian equations, Comm. Partial Differential Equations, 35 (2010), 745-785.doi: 10.1080/03605301003632317.

    [27]

    X.-J. Wang, On the design of a reflector antenna, Inverse problems, 12 (1996), 351-375.doi: 10.1088/0266-5611/12/3/013.

    [28]

    X.-J. Wang, On the design of a reflector antenna II, Calc. Var. PDE, 20 (2004), 329-341.doi: 10.1007/s00526-003-0239-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return