-
Previous Article
Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations
- DCDS Home
- This Issue
-
Next Article
Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces
On the classical solvability of near field reflector problems
1. | School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, NSW 2522, Australia |
2. | Centre for Mathematics and Its Applications, the Australian National University, Canberra, ACT 0200, Australia |
References:
[1] |
L. A. Caffarelli, Boundary regularity of maps with convex potentials II, Ann. of Math., 144 (1996), 453-496.
doi: 10.2307/2118564. |
[2] |
L. A. Caffarelli and V. Oliker, Weak solutions of one inverse problem in geometric optics, J. Math. Sci., 154 (2008), 37-46.
doi: 10.1007/s10958-008-9152-x. |
[3] |
Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 8 (1991), 443-457.
doi: 10.1016/j.anihpc.2007.03.001. |
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[5] |
P. Guan and X.-J. Wang, On a Monge-Ampère equation arising in geometric optics, J. Diff. Geom., 48 (1998), 205-223. |
[6] |
C. Gutiérrez and F. Tournier, The parallel refractor, Developments in Mathematics, 28 (2013), 325-334.
doi: 10.1007/978-1-4614-4075-8_14. |
[7] |
F. Jiang and N. S. Trudinger, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci., 4 (2014), 407-431.
doi: 10.1007/s13373-014-0055-5. |
[8] |
A. Karakhanyan, Existence and regularity of the reflector surfaces in $\mathbbR^{n+1}$, Arch. Ration. Mech. Anal., 213 (2014), 833-885.
doi: 10.1007/s00205-014-0743-z. |
[9] |
A. Karakhanyan and X.-J. Wang, On the reflector shape design, J. Diff. Geom., 84 (2010), 561-610. |
[10] |
S. Kochengin and V. Oliker, Determination of reflector surfaces from near-field scattering data, Inverse Problems, 13 (1997), 363-373.
doi: 10.1088/0266-5611/13/2/011. |
[11] |
Y. Li, J. Liu and L. Nguyen, A degree theory for second order nonlinear elliptic operators with nonlinear oblique boundary conditions,, preprint, (): 26.
|
[12] |
G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations. Trans. Amer. Math. Soc., 295 (1986), 509-546.
doi: 10.1090/S0002-9947-1986-0833695-6. |
[13] |
P.-L. Lions, N. S. Trudinger and J. Urbas, Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39 (1986), 539-563.
doi: 10.1002/cpa.3160390405. |
[14] |
J. Liu, Light reflection is nonlinear optimization, Calc. Var. PDE, 46 (2013), 861-878.
doi: 10.1007/s00526-012-0506-3. |
[15] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Rat. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[16] |
V. Oliker, Differential equations for design of a freeform single lens with prescribed irradiance properties, Optical Engineering, 53 (2014), 031301, 10pp.
doi: 10.1117/1.OE.53.3.031302. |
[17] |
V. Oliker, J. Rubinstein and G. Wolansky, Supporting quadric method in optical design of freeform lenses for precise illumination control of a collimated light beam, Advances in Appl. Math., 62 (2015), 160-183.
doi: 10.1016/j.aam.2014.09.009. |
[18] |
N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303. |
[19] |
N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type, Proc. Int. Cong. Math., Madrid, 3 (2006), 291-301. |
[20] |
N. S. Trudinger, On the prescribed Jacobian equation, Gakuto Intl. Series, Math. Sci. Appl., Proc. Intl. Conf. for the 25th Anniversary of Viscosity Solutions, XX (2008), 243-255. |
[21] |
N. S. Trudinger, On the local theory of prescribed Jacobian equations, Discrete Contin. Dyn. Syst., 34 (2014), 1663-1681.
doi: 10.3934/dcds.2014.34.1663. |
[22] |
N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143-174. |
[23] |
J. Urbas, On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math., 487 (1997), 115-124.
doi: 10.1515/crll.1997.487.115. |
[24] |
J. Urbas, Mass Transfer Problems, Lecture Notes, Univ. of Bonn, 1998. |
[25] |
J. Urbas, Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. PDE, 7 (1998), 19-39.
doi: 10.1007/s005260050097. |
[26] |
G. von Nessi, On the second boundary value problem for a class of modified-Hessian equations, Comm. Partial Differential Equations, 35 (2010), 745-785.
doi: 10.1080/03605301003632317. |
[27] |
X.-J. Wang, On the design of a reflector antenna, Inverse problems, 12 (1996), 351-375.
doi: 10.1088/0266-5611/12/3/013. |
[28] |
X.-J. Wang, On the design of a reflector antenna II, Calc. Var. PDE, 20 (2004), 329-341.
doi: 10.1007/s00526-003-0239-4. |
show all references
References:
[1] |
L. A. Caffarelli, Boundary regularity of maps with convex potentials II, Ann. of Math., 144 (1996), 453-496.
doi: 10.2307/2118564. |
[2] |
L. A. Caffarelli and V. Oliker, Weak solutions of one inverse problem in geometric optics, J. Math. Sci., 154 (2008), 37-46.
doi: 10.1007/s10958-008-9152-x. |
[3] |
Ph. Delanoë, Classical solvability in dimension two of the second boundary value problem associated with the Monge-Ampère operator, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, 8 (1991), 443-457.
doi: 10.1016/j.anihpc.2007.03.001. |
[4] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[5] |
P. Guan and X.-J. Wang, On a Monge-Ampère equation arising in geometric optics, J. Diff. Geom., 48 (1998), 205-223. |
[6] |
C. Gutiérrez and F. Tournier, The parallel refractor, Developments in Mathematics, 28 (2013), 325-334.
doi: 10.1007/978-1-4614-4075-8_14. |
[7] |
F. Jiang and N. S. Trudinger, On Pogorelov estimates in optimal transportation and geometric optics, Bull. Math. Sci., 4 (2014), 407-431.
doi: 10.1007/s13373-014-0055-5. |
[8] |
A. Karakhanyan, Existence and regularity of the reflector surfaces in $\mathbbR^{n+1}$, Arch. Ration. Mech. Anal., 213 (2014), 833-885.
doi: 10.1007/s00205-014-0743-z. |
[9] |
A. Karakhanyan and X.-J. Wang, On the reflector shape design, J. Diff. Geom., 84 (2010), 561-610. |
[10] |
S. Kochengin and V. Oliker, Determination of reflector surfaces from near-field scattering data, Inverse Problems, 13 (1997), 363-373.
doi: 10.1088/0266-5611/13/2/011. |
[11] |
Y. Li, J. Liu and L. Nguyen, A degree theory for second order nonlinear elliptic operators with nonlinear oblique boundary conditions,, preprint, (): 26.
|
[12] |
G. M. Lieberman and N. S. Trudinger, Nonlinear oblique boundary value problems for nonlinear elliptic equations. Trans. Amer. Math. Soc., 295 (1986), 509-546.
doi: 10.1090/S0002-9947-1986-0833695-6. |
[13] |
P.-L. Lions, N. S. Trudinger and J. Urbas, Neumann problem for equations of Monge-Ampère type, Comm. Pure Appl. Math., 39 (1986), 539-563.
doi: 10.1002/cpa.3160390405. |
[14] |
J. Liu, Light reflection is nonlinear optimization, Calc. Var. PDE, 46 (2013), 861-878.
doi: 10.1007/s00526-012-0506-3. |
[15] |
X.-N. Ma, N. S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem, Arch. Rat. Mech. Anal., 177 (2005), 151-183.
doi: 10.1007/s00205-005-0362-9. |
[16] |
V. Oliker, Differential equations for design of a freeform single lens with prescribed irradiance properties, Optical Engineering, 53 (2014), 031301, 10pp.
doi: 10.1117/1.OE.53.3.031302. |
[17] |
V. Oliker, J. Rubinstein and G. Wolansky, Supporting quadric method in optical design of freeform lenses for precise illumination control of a collimated light beam, Advances in Appl. Math., 62 (2015), 160-183.
doi: 10.1016/j.aam.2014.09.009. |
[18] |
N. S. Trudinger, On the Dirichlet problem for Hessian equations, Acta Math., 175 (1995), 151-164.
doi: 10.1007/BF02393303. |
[19] |
N. S. Trudinger, Recent developments in elliptic partial differential equations of Monge-Ampère type, Proc. Int. Cong. Math., Madrid, 3 (2006), 291-301. |
[20] |
N. S. Trudinger, On the prescribed Jacobian equation, Gakuto Intl. Series, Math. Sci. Appl., Proc. Intl. Conf. for the 25th Anniversary of Viscosity Solutions, XX (2008), 243-255. |
[21] |
N. S. Trudinger, On the local theory of prescribed Jacobian equations, Discrete Contin. Dyn. Syst., 34 (2014), 1663-1681.
doi: 10.3934/dcds.2014.34.1663. |
[22] |
N. S. Trudinger and X.-J. Wang, On the second boundary value problem for Monge-Ampère type equations and optimal transportation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 143-174. |
[23] |
J. Urbas, On the second boundary value problem for equations of Monge-Ampère type, J. Reine Angew. Math., 487 (1997), 115-124.
doi: 10.1515/crll.1997.487.115. |
[24] |
J. Urbas, Mass Transfer Problems, Lecture Notes, Univ. of Bonn, 1998. |
[25] |
J. Urbas, Oblique boundary value problems for equations of Monge-Ampère type, Calc. Var. PDE, 7 (1998), 19-39.
doi: 10.1007/s005260050097. |
[26] |
G. von Nessi, On the second boundary value problem for a class of modified-Hessian equations, Comm. Partial Differential Equations, 35 (2010), 745-785.
doi: 10.1080/03605301003632317. |
[27] |
X.-J. Wang, On the design of a reflector antenna, Inverse problems, 12 (1996), 351-375.
doi: 10.1088/0266-5611/12/3/013. |
[28] |
X.-J. Wang, On the design of a reflector antenna II, Calc. Var. PDE, 20 (2004), 329-341.
doi: 10.1007/s00526-003-0239-4. |
[1] |
Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069 |
[2] |
Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559 |
[3] |
Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267 |
[4] |
Nam Q. Le. Optimal boundary regularity for some singular Monge-Ampère equations on bounded convex domains. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2199-2214. doi: 10.3934/dcds.2021188 |
[5] |
Shuyu Gong, Ziwei Zhou, Jiguang Bao. Existence and uniqueness of viscosity solutions to the exterior problem of a parabolic Monge-Ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4921-4936. doi: 10.3934/cpaa.2020218 |
[6] |
Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete and Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825 |
[7] |
Yahui Niu. Monotonicity of solutions for a class of nonlocal Monge-Ampère problem. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5269-5283. doi: 10.3934/cpaa.2020237 |
[8] |
Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations and Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015 |
[9] |
Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure and Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002 |
[10] |
Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete and Continuous Dynamical Systems, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121 |
[11] |
Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991 |
[12] |
Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060 |
[13] |
Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure and Applied Analysis, 2021, 20 (2) : 915-931. doi: 10.3934/cpaa.2020297 |
[14] |
Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061 |
[15] |
Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221 |
[16] |
Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 |
[17] |
Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058 |
[18] |
Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure and Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59 |
[19] |
Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347 |
[20] |
Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete and Continuous Dynamical Systems, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]