Citation: |
[1] |
E. Akin, Simplicial dynamical systems, Mem. Amer. Math. Soc., 140 (1999), x+197 pp.doi: 10.1090/memo/0667. |
[2] |
V. A. Boichenko, G. A. Leonov and V. Reitmann, Dimension Theory for Ordinary Differential Equations, Teubner, Stuttgart, 2005.doi: 10.1007/978-3-322-80055-8. |
[3] |
R. Bowen, Topological entropy and axiom $A$, Global Analysis, Proc. Sympos. Pure Math., 14 (1970), 23-41. |
[4] |
R. Bowen, Periodic orbits for hyperbolic flows, Amer. J. Math., 94 (1972), 1-30.doi: 10.2307/2373590. |
[5] |
F. Colonius and W. Du, Hyperbolic control sets and chain control sets, J. Dynam. Control Systems, 7 (2001), 49-59.doi: 10.1023/A:1026645605711. |
[6] |
F. Colonius and C. Kawan, Invariance entropy for control systems, SIAM J. Control Optim., 48 (2009), 1701-1721.doi: 10.1137/080713902. |
[7] |
F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser, Boston, 2000.doi: 10.1007/978-1-4612-1350-5. |
[8] |
F. Colonius and W. Kliemann, Dynamical Systems and Linear Algebra, Graduate Studies in Mathematics, 158, AMS, 2014. |
[9] |
J.-M. Coron, Linearized control systems and applications to smooth stabilization, SIAM J. Control Optim., 32 (1994), 358-386.doi: 10.1137/S0363012992226867. |
[10] |
A. Da Silva and C. Kawan, Hyperbolic chain control sets on flag manifolds, preprint, submitted (Nov. 2014), arXiv:1402.5841. |
[11] |
M. F. Demers and L.-S. Young, Escape rates and conditionally invariant measures, Nonlinearity, 19 (2006), 377-397.doi: 10.1088/0951-7715/19/2/008. |
[12] |
C. Kawan, Invariance entropy of control sets, SIAM J. Control Optim., 49 (2011), 732-751.doi: 10.1137/100783340. |
[13] |
C. Kawan, Invariance Entropy for Deterministic Control Systems - An Introduction, Lecture Notes in Mathematics, 2089, Springer-Verlag, Berlin, 2013.doi: 10.1007/978-3-319-01288-9. |
[14] |
C. Kawan and T. Stender, Growth rates for semiflows on Hausdorff spaces, J. Dynam. Differential Equations, 24 (2012), 369-390.doi: 10.1007/s10884-012-9242-9. |
[15] |
O. S. Kozlovski, An integral formula for topological entropy of $\CC^{\infty}$ maps, Ergodic Theory Dynam. Systems, 18 (1998), 405-424.doi: 10.1017/S0143385798100391. |
[16] |
P.-D. Liu, Random perturbations of axiom $A$ basic sets, J. Stat. Phys., 90 (1998), 467-490.doi: 10.1023/A:1023280407906. |
[17] |
G. N. Nair, R. J. Evans, I. M. Y. Mareels and W. Moran, Topological feedback entropy and nonlinear stabilization, IEEE Trans. Automat. Control, 49 (2004), 1585-1597.doi: 10.1109/TAC.2004.834105. |
[18] |
H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.doi: 10.1007/978-1-4757-2101-0. |
[19] |
M. Qian and Z. Zhang, Ergodic theory for axiom $A$ endomorphisms, Ergod. Th. & Dynam. Sys., 15 (1995), 161-174.doi: 10.1017/S0143385700008294. |
[20] |
L. A. B. San Martin and L. Seco, Morse and Lyapunov spectra and dynamics on flag bundles, Ergod. Th. & Dynam. Sys., 30 (2010), 893-922.doi: 10.1017/S0143385709000285. |
[21] |
E. D. Sontag, Finite-dimensional open-loop control generators for nonlinear systems, International J. Control, 47 (1988), 537-556.doi: 10.1080/00207178808906030. |
[22] |
E. D. Sontag, Mathematical Control Theory. Deterministic Finite-Dimensional Systems, $2^{nd}$ edition, Texts in Applied Mathematics, 6. Springer-Verlag, New York, 1998.doi: 10.1007/978-1-4612-0577-7. |
[23] |
Y. Yomdin, Volume growth and entropy, Israel J. Math., 57 (1987), 285-300.doi: 10.1007/BF02766215. |
[24] |
L.-S. Young, Large deviations in dynamical systems, Trans. Amer. Math. Soc., 318 (1990), 525-543.doi: 10.2307/2001318. |