• Previous Article
    Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations
  • DCDS Home
  • This Issue
  • Next Article
    Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
February  2016, 36(2): 971-980. doi: 10.3934/dcds.2016.36.971

Topological degree method for the rotationally symmetric $L_p$-Minkowski problem

1. 

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084

Received  October 2014 Revised  February 2015 Published  August 2015

Consider the existence of rotationally symmetric solutions to the $L_p$-Minkowski problem for $p=-n-1$. Recently a sufficient condition was obtained for the existence via the variational method and a blow-up analysis in [16]. In this paper we use a topological degree method to prove the same existence and show the result holds under a similar complementary sufficient condition. Moreover, by this degree method, we obtain the existence result in a perturbation case.
Citation: Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971
References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199.  doi: 10.1007/BF00375127.  Google Scholar

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.   Google Scholar

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657.  doi: 10.1002/cpa.3160480606.  Google Scholar

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209.  doi: 10.1016/j.aim.2012.02.027.  Google Scholar

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165.  doi: 10.1007/s00526-003-0214-0.  Google Scholar

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.   Google Scholar

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319.  doi: 10.1006/jdeq.1995.1115.  Google Scholar

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983.  doi: 10.1016/j.jde.2012.10.008.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.   Google Scholar

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359.  doi: 10.1090/S0002-9947-03-03403-2.  Google Scholar

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.   Google Scholar

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).   Google Scholar

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176.  doi: 10.1016/S0001-8708(02)00101-9.  Google Scholar

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909.  doi: 10.1016/j.aim.2014.06.004.  Google Scholar

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.   Google Scholar

show all references

References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199.  doi: 10.1007/BF00375127.  Google Scholar

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.   Google Scholar

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657.  doi: 10.1002/cpa.3160480606.  Google Scholar

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209.  doi: 10.1016/j.aim.2012.02.027.  Google Scholar

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165.  doi: 10.1007/s00526-003-0214-0.  Google Scholar

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.   Google Scholar

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319.  doi: 10.1006/jdeq.1995.1115.  Google Scholar

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983.  doi: 10.1016/j.jde.2012.10.008.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.   Google Scholar

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359.  doi: 10.1090/S0002-9947-03-03403-2.  Google Scholar

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.   Google Scholar

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).   Google Scholar

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176.  doi: 10.1016/S0001-8708(02)00101-9.  Google Scholar

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909.  doi: 10.1016/j.aim.2014.06.004.  Google Scholar

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.   Google Scholar

[1]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[2]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[3]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[4]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[5]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[6]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[7]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[8]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[9]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[12]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[13]

Rim Bourguiba, Rosana Rodríguez-López. Existence results for fractional differential equations in presence of upper and lower solutions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1723-1747. doi: 10.3934/dcdsb.2020180

[14]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[17]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[20]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]