• Previous Article
    Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations
  • DCDS Home
  • This Issue
  • Next Article
    Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment
February  2016, 36(2): 971-980. doi: 10.3934/dcds.2016.36.971

Topological degree method for the rotationally symmetric $L_p$-Minkowski problem

1. 

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023, China

2. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084

Received  October 2014 Revised  February 2015 Published  August 2015

Consider the existence of rotationally symmetric solutions to the $L_p$-Minkowski problem for $p=-n-1$. Recently a sufficient condition was obtained for the existence via the variational method and a blow-up analysis in [16]. In this paper we use a topological degree method to prove the same existence and show the result holds under a similar complementary sufficient condition. Moreover, by this degree method, we obtain the existence result in a perturbation case.
Citation: Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971
References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199.  doi: 10.1007/BF00375127.  Google Scholar

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.   Google Scholar

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657.  doi: 10.1002/cpa.3160480606.  Google Scholar

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209.  doi: 10.1016/j.aim.2012.02.027.  Google Scholar

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165.  doi: 10.1007/s00526-003-0214-0.  Google Scholar

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.   Google Scholar

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319.  doi: 10.1006/jdeq.1995.1115.  Google Scholar

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983.  doi: 10.1016/j.jde.2012.10.008.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.   Google Scholar

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359.  doi: 10.1090/S0002-9947-03-03403-2.  Google Scholar

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.   Google Scholar

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).   Google Scholar

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176.  doi: 10.1016/S0001-8708(02)00101-9.  Google Scholar

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909.  doi: 10.1016/j.aim.2014.06.004.  Google Scholar

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.   Google Scholar

show all references

References:
[1]

J. Ai, K.-S. Chou and J.-C. Wei, Self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 13 (2001), 311.  doi: 10.1007/s005260000075.  Google Scholar

[2]

L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing,, Arch. Rational Mech. Anal., 123 (1993), 199.  doi: 10.1007/BF00375127.  Google Scholar

[3]

B. Andrews, Evolving convex curves,, Calc. Var. Partial Differential Equations, 7 (1998), 315.  doi: 10.1007/s005260050111.  Google Scholar

[4]

J. Böröczky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem,, J. Amer. Math. Soc., 26 (2013), 831.  doi: 10.1090/S0894-0347-2012-00741-3.  Google Scholar

[5]

E. Calabi, Complete affine hyperspheres. I,, in Symposia Mathematica, (1972), 19.   Google Scholar

[6]

S.-Y. A. Chang, M. J. Gursky and P. C. Yang, The scalar curvature equation on $2$- and $3$-spheres,, Calc. Var. Partial Differential Equations, 1 (1993), 205.  doi: 10.1007/BF01191617.  Google Scholar

[7]

W.-X. Chen, $L_p$ Minkowski problem with not necessarily positive data,, Adv. Math., 201 (2006), 77.  doi: 10.1016/j.aim.2004.11.007.  Google Scholar

[8]

W.-X. Chen and C.-M. Li, A necessary and sufficient condition for the Nirenberg problem,, Comm. Pure Appl. Math., 48 (1995), 657.  doi: 10.1002/cpa.3160480606.  Google Scholar

[9]

K.-S. Chou and X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry,, Adv. Math., 205 (2006), 33.  doi: 10.1016/j.aim.2005.07.004.  Google Scholar

[10]

K.-S. Chou and X.-P. Zhu, The Curve Shortening Problem,, Chapman & Hall/CRC, (2001).  doi: 10.1201/9781420035704.  Google Scholar

[11]

J.-B. Dou and M.-J. Zhu, The two dimensional $L_p$ Minkowski problem and nonlinear equations with negative exponents,, Adv. Math., 230 (2012), 1209.  doi: 10.1016/j.aim.2012.02.027.  Google Scholar

[12]

M. Ji, On positive scalar curvature on $S^2$,, Calc. Var. Partial Differential Equations, 19 (2004), 165.  doi: 10.1007/s00526-003-0214-0.  Google Scholar

[13]

H.-Y. Jian and X.-J. Wang, Bernsterin theorem and regularity for a class of Monge Ampère equations,, J. Diff. Geom., 93 (2013), 431.   Google Scholar

[14]

M.-Y. Jiang, L.-P. Wang and J.-C. Wei, $2\pi$-periodic self-similar solutions for the anisotropic affine curve shortening problem,, Calc. Var. Partial Differential Equations, 41 (2011), 535.  doi: 10.1007/s00526-010-0375-6.  Google Scholar

[15]

Y.-Y. Li, Prescribing scalar curvature on $S^n$ and related problems. I,, J. Differential Equations, 120 (1995), 319.  doi: 10.1006/jdeq.1995.1115.  Google Scholar

[16]

J. Lu and X.-J. Wang, Rotationally symmetric solutions to the $L_p$-Minkowski problem,, J. Differential Equations, 254 (2013), 983.  doi: 10.1016/j.jde.2012.10.008.  Google Scholar

[17]

E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem,, J. Differential Geom., 38 (1993), 131.   Google Scholar

[18]

E. Lutwak, D. Yang and G. Zhang, On the $L_p$-Minkowski problem,, Trans. Amer. Math. Soc., 356 (2004), 4359.  doi: 10.1090/S0002-9947-03-03403-2.  Google Scholar

[19]

E. Lutwak and G. Zhang, Blaschke-Santaló inequalities,, J. Diff. Geom., 47 (1997), 1.   Google Scholar

[20]

R. Schoen and D. Zhang, Prescribed scalar curvature on the $n$-sphere,, Calc. Var. Partial Differential Equations, 4 (1996), 1.  doi: 10.1007/BF01322307.  Google Scholar

[21]

G. Szego, Orthogonal Polynomials,, American Mathematical Society, (1975).   Google Scholar

[22]

V. Umanskiy, On solvability of two-dimensional $L_p$-Minkowski problem,, Adv. Math., 180 (2003), 176.  doi: 10.1016/S0001-8708(02)00101-9.  Google Scholar

[23]

G. Zhu, The logarithmic Minkowski problem for polytopes,, Adv. Math., 262 (2014), 909.  doi: 10.1016/j.aim.2014.06.004.  Google Scholar

[24]

G. Zhu, The centro-affine Minkowski problem for polytopes,, J. Differential Geom., 101 (2015), 159.   Google Scholar

[1]

Cristian Enache. Maximum and minimum principles for a class of Monge-Ampère equations in the plane, with applications to surfaces of constant Gauss curvature. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1347-1359. doi: 10.3934/cpaa.2014.13.1347

[2]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[3]

Luca Codenotti, Marta Lewicka. Visualization of the convex integration solutions to the Monge-Ampère equation. Evolution Equations & Control Theory, 2019, 8 (2) : 273-300. doi: 10.3934/eect.2019015

[4]

Qi-Rui Li, Xu-Jia Wang. Regularity of the homogeneous Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6069-6084. doi: 10.3934/dcds.2015.35.6069

[5]

Shouchuan Hu, Haiyan Wang. Convex solutions of boundary value problem arising from Monge-Ampère equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (3) : 705-720. doi: 10.3934/dcds.2006.16.705

[6]

Bo Guan, Qun Li. A Monge-Ampère type fully nonlinear equation on Hermitian manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1991-1999. doi: 10.3934/dcdsb.2012.17.1991

[7]

Fan Cui, Huaiyu Jian. Symmetry of solutions to a class of Monge-Ampère equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1247-1259. doi: 10.3934/cpaa.2019060

[8]

Jingang Xiong, Jiguang Bao. The obstacle problem for Monge-Ampère type equations in non-convex domains. Communications on Pure & Applied Analysis, 2011, 10 (1) : 59-68. doi: 10.3934/cpaa.2011.10.59

[9]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[10]

Diego Maldonado. On interior $C^2$-estimates for the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1427-1440. doi: 10.3934/dcds.2018058

[11]

Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053

[12]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[13]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[14]

Jiakun Liu, Neil S. Trudinger. On Pogorelov estimates for Monge-Ampère type equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1121-1135. doi: 10.3934/dcds.2010.28.1121

[15]

Limei Dai, Hongyu Li. Entire subsolutions of Monge-Ampère type equations. Communications on Pure & Applied Analysis, 2020, 19 (1) : 19-30. doi: 10.3934/cpaa.2020002

[16]

Haitao Yang, Yibin Chang. On the blow-up boundary solutions of the Monge -Ampére equation with singular weights. Communications on Pure & Applied Analysis, 2012, 11 (2) : 697-708. doi: 10.3934/cpaa.2012.11.697

[17]

Alberto Boscaggin, Francesca Colasuonno, Benedetta Noris. Positive radial solutions for the Minkowski-curvature equation with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020150

[18]

Gregorio Díaz, Jesús Ildefonso Díaz. On the free boundary associated with the stationary Monge--Ampère operator on the set of non strictly convex functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1447-1468. doi: 10.3934/dcds.2015.35.1447

[19]

Shao-Yuan Huang. Exact multiplicity and bifurcation curves of positive solutions of a one-dimensional Minkowski-curvature problem and its application. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1271-1294. doi: 10.3934/cpaa.2018061

[20]

Shao-Yuan Huang. Bifurcation diagrams of positive solutions for one-dimensional Minkowski-curvature problem and its applications. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3443-3462. doi: 10.3934/dcds.2019142

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]