• Previous Article
    Existence and stability of a two-parameter family of solitary waves for a 2-coupled nonlinear Schrödinger system
  • DCDS Home
  • This Issue
  • Next Article
    Topological degree method for the rotationally symmetric $L_p$-Minkowski problem
February  2016, 36(2): 981-1004. doi: 10.3934/dcds.2016.36.981

Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations

1. 

Department of Mathematics, Capital Normal University, Beijing 100048, China

2. 

School of Mathematics and Statistics, Northeast Normal University, Changchun, MO 130024

Received  June 2014 Revised  June 2014 Published  August 2015

Under the conditions of both the initial data being the small perturbation of given steady state solution and the boundary strength being small, the global existence of smooth solution to the initial boundary value problem of the relativistic Euler-Poisson equations is proved. The convergence of the global smooth solution to smooth steady state solution in time exponentially is also obtained when time goes to infinity.
Citation: La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981
References:
[1]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[2]

I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor,, Comm. Partial Differential Equations, 17 (1992), 553.  doi: 10.1080/03605309208820853.  Google Scholar

[3]

J. P. Goedbloed, R. Keppens and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas,, Cambridge University Press, (2010).  doi: 10.1017/CBO9781139195560.  Google Scholar

[4]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[5]

L. Hsiao and K. J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations,, J. Differential Equations, 165 (2000), 315.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[6]

F. M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors,, SIAM J. Math. Anal., 43 (2011), 411.  doi: 10.1137/100793025.  Google Scholar

[7]

H. L. Li, P. A. Markowich and M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors,, Proc. Roy. Soc. Edinburgh Sect. A., 132 (2002), 359.  doi: 10.1017/S0308210500001670.  Google Scholar

[8]

T. Luo, R. Natalini and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors,, SIAM J. Math. Anal., 59 (1999), 810.  doi: 10.1137/S0036139996312168.  Google Scholar

[9]

La-Su. Mai, J. Y. Li and K. J. Zhang, On the steady state relativistic Euler-Poisson equations,, Acta. Appl. Math., 125 (2013), 135.  doi: 10.1007/s10440-012-9784-1.  Google Scholar

[10]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables,, (Appl. Math. Sci. 53), (1984).   Google Scholar

[11]

P. A. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Ration. Mech. Analysis., 129 (1995), 129.  doi: 10.1007/BF00379918.  Google Scholar

[12]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 115.  doi: 10.1017/S030821050003078X.  Google Scholar

[13]

P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, , Springer-Verlag, (1986).   Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differential Equations, 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[16]

V. Pant, On I. Symmetry Breaking Under Perturbations and II. Relativistic Fluid Dynamics,, Ph. D. Thesis, (1996).   Google Scholar

[17]

Y. J. Peng, Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors,, Chinese Ann. Math. Ser. B, 23 (2002), 25.  doi: 10.1142/S0252959902000043.  Google Scholar

[18]

F. Poupaud, M. Rascle and J. P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data,, J. Differential Equations, 123 (1995), 93.  doi: 10.1006/jdeq.1995.1158.  Google Scholar

[19]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49.  doi: 10.1007/BF01210792.  Google Scholar

[20]

B, Zhang, On a local existence theorem for a simplified one-dimensional hydrodynamic model for semiconductor devices,, SIAM J. Math. Anal., 25 (1994), 941.  doi: 10.1137/S0036141092224595.  Google Scholar

show all references

References:
[1]

P. Degond and P. A. Markowich, On a one-dimensional steady-state hydrodynamic model for semiconductors,, Appl. Math. Lett., 3 (1990), 25.  doi: 10.1016/0893-9659(90)90130-4.  Google Scholar

[2]

I. Gamba, Stationary transonic solutions of a one-dimensional hydrodynamic model for semiconductor,, Comm. Partial Differential Equations, 17 (1992), 553.  doi: 10.1080/03605309208820853.  Google Scholar

[3]

J. P. Goedbloed, R. Keppens and S. Poedts, Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas,, Cambridge University Press, (2010).  doi: 10.1017/CBO9781139195560.  Google Scholar

[4]

Y. Guo and W. Strauss, Stability of semiconductor states with insulating and contact boundary,, Arch. Ration. Mech. Anal., 179 (2006), 1.  doi: 10.1007/s00205-005-0369-2.  Google Scholar

[5]

L. Hsiao and K. J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations,, J. Differential Equations, 165 (2000), 315.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[6]

F. M. Huang, M. Mei, Y. Wang and H. Yu, Asymptotic convergence to stationary waves for unipolar hydrodynamic model of semiconductors,, SIAM J. Math. Anal., 43 (2011), 411.  doi: 10.1137/100793025.  Google Scholar

[7]

H. L. Li, P. A. Markowich and M. Mei, Asymptotic behaviour of solutions of the hydrodynamic model of semiconductors,, Proc. Roy. Soc. Edinburgh Sect. A., 132 (2002), 359.  doi: 10.1017/S0308210500001670.  Google Scholar

[8]

T. Luo, R. Natalini and Z. Xin, Large time behavior of the solutions to a hydrodynamic model for semiconductors,, SIAM J. Math. Anal., 59 (1999), 810.  doi: 10.1137/S0036139996312168.  Google Scholar

[9]

La-Su. Mai, J. Y. Li and K. J. Zhang, On the steady state relativistic Euler-Poisson equations,, Acta. Appl. Math., 125 (2013), 135.  doi: 10.1007/s10440-012-9784-1.  Google Scholar

[10]

A. Majda, Compressible Fluid Flow and System of Conservation Laws in Several Space Variables,, (Appl. Math. Sci. 53), (1984).   Google Scholar

[11]

P. A. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and relaxation to the drift-diffusion equation,, Arch. Ration. Mech. Analysis., 129 (1995), 129.  doi: 10.1007/BF00379918.  Google Scholar

[12]

P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors: The Cauchy problem,, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995), 115.  doi: 10.1017/S030821050003078X.  Google Scholar

[13]

P. A. Markowich, The Stationary Semiconductor Device Equations, Computational Microelectronics, , Springer-Verlag, (1986).   Google Scholar

[14]

S. Nishibata and M. Suzuki, Asymptotic stability of a stationary solution to a hydrodynamic model of semiconductors,, Osaka J. Math., 44 (2007), 639.   Google Scholar

[15]

S. Nishibata and M. Suzuki, Relaxation limit and initial layer to hydrodynamic models for semiconductors,, J. Differential Equations, 249 (2010), 1385.  doi: 10.1016/j.jde.2010.06.008.  Google Scholar

[16]

V. Pant, On I. Symmetry Breaking Under Perturbations and II. Relativistic Fluid Dynamics,, Ph. D. Thesis, (1996).   Google Scholar

[17]

Y. J. Peng, Asymptotic limits of one-dimensional hydrodynamic models for plasmas and semiconductors,, Chinese Ann. Math. Ser. B, 23 (2002), 25.  doi: 10.1142/S0252959902000043.  Google Scholar

[18]

F. Poupaud, M. Rascle and J. P. Vila, Global solutions to the isothermal Euler-Poisson system with arbitrarily large data,, J. Differential Equations, 123 (1995), 93.  doi: 10.1006/jdeq.1995.1158.  Google Scholar

[19]

S. Schochet, The compressible Euler equations in a bounded domain: Existence of solutions and the incompressible limit,, Comm. Math. Phys., 104 (1986), 49.  doi: 10.1007/BF01210792.  Google Scholar

[20]

B, Zhang, On a local existence theorem for a simplified one-dimensional hydrodynamic model for semiconductor devices,, SIAM J. Math. Anal., 25 (1994), 941.  doi: 10.1137/S0036141092224595.  Google Scholar

[1]

Yongcai Geng. Singularity formation for relativistic Euler and Euler-Poisson equations with repulsive force. Communications on Pure & Applied Analysis, 2015, 14 (2) : 549-564. doi: 10.3934/cpaa.2015.14.549

[2]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic & Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[3]

Hong Cai, Zhong Tan. Stability of stationary solutions to the compressible bipolar Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4677-4696. doi: 10.3934/dcds.2017201

[4]

A. Alexandrou Himonas, Gerard Misiołek, Feride Tiǧlay. On unique continuation for the modified Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 515-529. doi: 10.3934/dcds.2007.19.515

[5]

Masahiro Suzuki. Asymptotic stability of a boundary layer to the Euler--Poisson equations for a multicomponent plasma. Kinetic & Related Models, 2016, 9 (3) : 587-603. doi: 10.3934/krm.2016008

[6]

Manwai Yuen. Cylindrical blowup solutions to the isothermal Euler-Poisson equations. Conference Publications, 2011, 2011 (Special) : 1448-1456. doi: 10.3934/proc.2011.2011.1448

[7]

Jiang Xu, Ting Zhang. Zero-electron-mass limit of Euler-Poisson equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4743-4768. doi: 10.3934/dcds.2013.33.4743

[8]

Haigang Li, Jiguang Bao. Euler-Poisson equations related to general compressible rotating fluids. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1085-1096. doi: 10.3934/dcds.2011.29.1085

[9]

Sasho Popov, Jean-Marie Strelcyn. The Euler-Poisson equations: An elementary approach to integrability conditions. Journal of Geometric Mechanics, 2018, 10 (3) : 293-329. doi: 10.3934/jgm.2018011

[10]

Ming Mei, Yong Wang. Stability of stationary waves for full Euler-Poisson system in multi-dimensional space. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1775-1807. doi: 10.3934/cpaa.2012.11.1775

[11]

Qi S. Zhang. An example of large global smooth solution of 3 dimensional Navier-Stokes equations without pressure. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5521-5523. doi: 10.3934/dcds.2013.33.5521

[12]

Yachun Li, Qiufang Shi. Global existence of the entropy solutions to the isentropic relativistic Euler equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 763-778. doi: 10.3934/cpaa.2005.4.763

[13]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[14]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[15]

Zhigang Wu, Weike Wang. Pointwise estimates of solutions for the Euler-Poisson equations with damping in multi-dimensions. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1101-1117. doi: 10.3934/dcds.2010.26.1101

[16]

Yachun Li, Xucai Ren. Non-relativistic global limits of the entropy solutions to the relativistic Euler equations with $\gamma$-law. Communications on Pure & Applied Analysis, 2006, 5 (4) : 963-979. doi: 10.3934/cpaa.2006.5.963

[17]

Xingwen Hao, Yachun Li, Zejun Wang. Non-relativistic global limits to the three dimensional relativistic euler equations with spherical symmetry. Communications on Pure & Applied Analysis, 2010, 9 (2) : 365-386. doi: 10.3934/cpaa.2010.9.365

[18]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[19]

Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062

[20]

Xueke Pu. Quasineutral limit of the Euler-Poisson system under strong magnetic fields. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2095-2111. doi: 10.3934/dcdss.2016086

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]