• Previous Article
    Classification of supersolutions and Liouville theorems for some nonlinear elliptic problems
  • DCDS Home
  • This Issue
  • Next Article
    Parameterization of slow-stable manifolds and their invariant vector bundles: Theory and numerical implementation
September  2016, 36(9): 4665-4702. doi: 10.3934/dcds.2016003

Laminations from the main cubioid

1. 

Department of Mathematics, University of Alabama at Birmingham, Birmingham, AL 35294-1170

2. 

Faculty of Mathematics, Laboratory of Algebraic Geometry and its Applications, National Research University Higher School of Economics, Vavilova St. 7, 112312 Moscow, Russian Federation, Russian Federation

Received  May 2013 Revised  January 2016 Published  May 2016

Polynomials from the closure of the principal hyperbolic domain of the cubic connectedness locus have some specific properties, which were studied in a recent paper by the authors. The family of (affine conjugacy classes of) all polynomials with these properties is called the Main Cubioid. In this paper, we describe a combinatorial counterpart of the Main Cubioid --- the set of invariant laminations that can be associated to polynomials from the Main Cubioid.
Citation: Alexander Blokh, Lex Oversteegen, Ross Ptacek, Vladlen Timorin. Laminations from the main cubioid. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4665-4702. doi: 10.3934/dcds.2016003
References:
[1]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific (Advanced Series in Nonlinear Dynamics, (2000).  doi: 10.1142/4205.  Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems in plane continua with applications,, Memoirs of the American Mathematical Society, 224 (2013).  doi: 10.1090/S0065-9266-2012-00671-X.  Google Scholar

[4]

A. Blokh and G. Levin, Growing trees, laminations and the dynamics on the Julia set,, Ergod. Th. and Dynam. Sys., 22 (2002), 63.  doi: 10.1017/S0143385702000032.  Google Scholar

[5]

A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen and D. Parris, Rotational subsets of the circle under $z^n$,, Topology and its Appl., 153 (2006), 1540.  doi: 10.1016/j.topol.2005.04.010.  Google Scholar

[6]

A. Blokh, D. Mimbs, L. Oversteegen and K. Valkenburg, Laminations in the language of leaves,, Trans. of the Amer. Math. Soc., 365 (2013), 5367.  doi: 10.1090/S0002-9947-2013-05809-6.  Google Scholar

[7]

A. Blokh and L. Oversteegen, {Monotone images of Cremer Julia sets,, Houston Journal of Mathematics, 36 (2010), 469.   Google Scholar

[8]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, Dynamical cores of topological polynomials,, Frontiers in complex dynamics, 51 (2014), 27.  doi: 10.1515/9781400851317-005.  Google Scholar

[9]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, The main cubioid,, Nonlinearity, 27 (2014), 1879.  doi: 10.1088/0951-7715/27/8/1879.  Google Scholar

[10]

X. Buff and C. Henriksen, Julia Sets in Parameter Spaces,, Commun. Math. Phys., 220 (2001), 333.  doi: 10.1007/PL00005568.  Google Scholar

[11]

C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete (German),, Math. Ann., 73 (1913), 323.  doi: 10.1007/BF01456699.  Google Scholar

[12]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Springer, (1993).  doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[13]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I,, Publications Mathématiques d'Orsay, (1984).   Google Scholar

[14]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes II,, Publications Mathématiques d'Orsay, 85-04 (1985), 85.   Google Scholar

[15]

A. Epstein and M. Yampolsky, Geography of the Cubic Connectedness Locus: Intertwining Surgery,, Ann. Sci. Éc. Norm. Sup., 32 (1999), 151.  doi: 10.1016/S0012-9593(99)80013-5.  Google Scholar

[16]

T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set,, Indiana Univ. Math. J., 63 (2014), 917.  doi: 10.1512/iumj.2014.63.5328.  Google Scholar

[17]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 51.   Google Scholar

[18]

J. Kiwi, Wandering orbit portraits,, Trans. of the Amer. Math. Soc., 354 (2002), 1473.  doi: 10.1090/S0002-9947-01-02896-3.  Google Scholar

[19]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Mathematics, 184 (2004), 207.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[20]

C. McMullen, The Mandelbrot set is universal,, in: The Mandelbrot Set, 274 (2007), 1.   Google Scholar

[21]

J. Milnor, Geometry and dynamics of quadratic rational maps,, Experimental Math., 2 (1993), 37.  doi: 10.1080/10586458.1993.10504267.  Google Scholar

[22]

J. Milnor, Dynamics in One Complex Variable,, Annals of Mathematical Studies, 160 (2006).   Google Scholar

[23]

J. Milnor, Cubic polynomial maps with periodic critical orbit I,, in: Complex Dynamics, (2009), 333.  doi: 10.1201/b10617-13.  Google Scholar

[24]

J. Milnor and A. Poirier, Hyperbolic components in spaces of polynomial maps,, Contemp. Math., 573 (2012), 183.  doi: 10.1090/conm/573/11428.  Google Scholar

[25]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical systems, 1342 (1988), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[26]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Pol. Sci., 27 (1979), 167.   Google Scholar

[27]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[28]

C. L. Petersen and T. Lei, Analytic coordinates recording cubic dynamics,, In: Complex Dynamics: Families and Friends, (2009), 413.  doi: 10.1201/b10617-14.  Google Scholar

[29]

C. L. Petersen, P. Roesch and T. Lei, Parabolic slices on the boundary of $\mathcal H$,, work in progress., ().   Google Scholar

[30]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order,, Ann. Sci. école Norm. Sup. (4), 40 (2007), 901.  doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[31]

W. Thurston, On the geometry and dynamics of iterated rational maps,, in: Complex dynamics: Families and Friends, (2009), 3.  doi: 10.1201/b10617-3.  Google Scholar

[32]

L.-S. Young, On the prevalence of horseshoes,, Trans. Amer. Math. Soc., 263 (1981), 75.  doi: 10.1090/S0002-9947-1981-0590412-0.  Google Scholar

[33]

S. Zakeri, Dynamics of cubic Siegel polynomials,, Comm. Math. Phys., 206 (1999), 185.  doi: 10.1007/s002200050702.  Google Scholar

show all references

References:
[1]

L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One,, World Scientific (Advanced Series in Nonlinear Dynamics, (2000).  doi: 10.1142/4205.  Google Scholar

[2]

A. Blokh, C. Curry and L. Oversteegen, Locally connected models for Julia sets,, Advances in Mathematics, 226 (2011), 1621.  doi: 10.1016/j.aim.2010.08.011.  Google Scholar

[3]

A. Blokh, R. Fokkink, J. Mayer, L. Oversteegen and E. Tymchatyn, Fixed point theorems in plane continua with applications,, Memoirs of the American Mathematical Society, 224 (2013).  doi: 10.1090/S0065-9266-2012-00671-X.  Google Scholar

[4]

A. Blokh and G. Levin, Growing trees, laminations and the dynamics on the Julia set,, Ergod. Th. and Dynam. Sys., 22 (2002), 63.  doi: 10.1017/S0143385702000032.  Google Scholar

[5]

A. Blokh, J. Malaugh, J. Mayer, L. Oversteegen and D. Parris, Rotational subsets of the circle under $z^n$,, Topology and its Appl., 153 (2006), 1540.  doi: 10.1016/j.topol.2005.04.010.  Google Scholar

[6]

A. Blokh, D. Mimbs, L. Oversteegen and K. Valkenburg, Laminations in the language of leaves,, Trans. of the Amer. Math. Soc., 365 (2013), 5367.  doi: 10.1090/S0002-9947-2013-05809-6.  Google Scholar

[7]

A. Blokh and L. Oversteegen, {Monotone images of Cremer Julia sets,, Houston Journal of Mathematics, 36 (2010), 469.   Google Scholar

[8]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, Dynamical cores of topological polynomials,, Frontiers in complex dynamics, 51 (2014), 27.  doi: 10.1515/9781400851317-005.  Google Scholar

[9]

A. Blokh, L. Oversteegen, R. Ptacek and V. Timorin, The main cubioid,, Nonlinearity, 27 (2014), 1879.  doi: 10.1088/0951-7715/27/8/1879.  Google Scholar

[10]

X. Buff and C. Henriksen, Julia Sets in Parameter Spaces,, Commun. Math. Phys., 220 (2001), 333.  doi: 10.1007/PL00005568.  Google Scholar

[11]

C. Carathéodory, Über die Begrenzung einfach zusammenhängender Gebiete (German),, Math. Ann., 73 (1913), 323.  doi: 10.1007/BF01456699.  Google Scholar

[12]

L. Carleson and T. W. Gamelin, Complex Dynamics,, Springer, (1993).  doi: 10.1007/978-1-4612-4364-9.  Google Scholar

[13]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes I,, Publications Mathématiques d'Orsay, (1984).   Google Scholar

[14]

A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes II,, Publications Mathématiques d'Orsay, 85-04 (1985), 85.   Google Scholar

[15]

A. Epstein and M. Yampolsky, Geography of the Cubic Connectedness Locus: Intertwining Surgery,, Ann. Sci. Éc. Norm. Sup., 32 (1999), 151.  doi: 10.1016/S0012-9593(99)80013-5.  Google Scholar

[16]

T. Gauthier, Higher bifurcation currents, neutral cycles, and the Mandelbrot set,, Indiana Univ. Math. J., 63 (2014), 917.  doi: 10.1512/iumj.2014.63.5328.  Google Scholar

[17]

L. Goldberg and J. Milnor, Fixed points of polynomial maps. II. Fixed point portraits,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 51.   Google Scholar

[18]

J. Kiwi, Wandering orbit portraits,, Trans. of the Amer. Math. Soc., 354 (2002), 1473.  doi: 10.1090/S0002-9947-01-02896-3.  Google Scholar

[19]

J. Kiwi, $\mathbb R$eal laminations and the topological dynamics of complex polynomials,, Advances in Mathematics, 184 (2004), 207.  doi: 10.1016/S0001-8708(03)00144-0.  Google Scholar

[20]

C. McMullen, The Mandelbrot set is universal,, in: The Mandelbrot Set, 274 (2007), 1.   Google Scholar

[21]

J. Milnor, Geometry and dynamics of quadratic rational maps,, Experimental Math., 2 (1993), 37.  doi: 10.1080/10586458.1993.10504267.  Google Scholar

[22]

J. Milnor, Dynamics in One Complex Variable,, Annals of Mathematical Studies, 160 (2006).   Google Scholar

[23]

J. Milnor, Cubic polynomial maps with periodic critical orbit I,, in: Complex Dynamics, (2009), 333.  doi: 10.1201/b10617-13.  Google Scholar

[24]

J. Milnor and A. Poirier, Hyperbolic components in spaces of polynomial maps,, Contemp. Math., 573 (2012), 183.  doi: 10.1090/conm/573/11428.  Google Scholar

[25]

J. Milnor and W. Thurston, On iterated maps of the interval,, in Dynamical systems, 1342 (1988), 465.  doi: 10.1007/BFb0082847.  Google Scholar

[26]

M. Misiurewicz, Horseshoes for mappings of the interval,, Bull. Acad. Pol. Sci., 27 (1979), 167.   Google Scholar

[27]

M. Misiurewicz and W. Szlenk, Entropy of piecewise monotone mappings,, Studia Math., 67 (1980), 45.   Google Scholar

[28]

C. L. Petersen and T. Lei, Analytic coordinates recording cubic dynamics,, In: Complex Dynamics: Families and Friends, (2009), 413.  doi: 10.1201/b10617-14.  Google Scholar

[29]

C. L. Petersen, P. Roesch and T. Lei, Parabolic slices on the boundary of $\mathcal H$,, work in progress., ().   Google Scholar

[30]

P. Roesch, Hyperbolic components of polynomials with a fixed critical point of maximal order,, Ann. Sci. école Norm. Sup. (4), 40 (2007), 901.  doi: 10.1016/j.ansens.2007.10.001.  Google Scholar

[31]

W. Thurston, On the geometry and dynamics of iterated rational maps,, in: Complex dynamics: Families and Friends, (2009), 3.  doi: 10.1201/b10617-3.  Google Scholar

[32]

L.-S. Young, On the prevalence of horseshoes,, Trans. Amer. Math. Soc., 263 (1981), 75.  doi: 10.1090/S0002-9947-1981-0590412-0.  Google Scholar

[33]

S. Zakeri, Dynamics of cubic Siegel polynomials,, Comm. Math. Phys., 206 (1999), 185.  doi: 10.1007/s002200050702.  Google Scholar

[1]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[2]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[3]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[4]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[5]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[8]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[9]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[10]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[11]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[14]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (1)

[Back to Top]