September  2016, 36(9): 4761-4811. doi: 10.3934/dcds.2016007

On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions

1. 

Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang Province, China

Received  November 2014 Revised  March 2016 Published  May 2016

In [13], Chen-Ma-Salani established the strict convexity of spacetime level sets of solutions to heat equation in convex rings, using the constant rank theorem and a deformation method. In this paper, we generalize the constant rank theorem in [13] to fully nonlinear parabolic equations, that is, establish the corresponding microscopic spacetime convexity principles for spacetime level sets. In fact, the results hold for fully nonlinear parabolic equations under a general structural condition, including the $p$-Laplacian parabolic equations ($p >1$) and some mean curvature type parabolic equations.
Citation: Chuanqiang Chen. On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4761-4811. doi: 10.3934/dcds.2016007
References:
[1]

L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.  Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations, Inventiones Math., 177 (2009), 307-335. doi: 10.1007/s00222-009-0179-5.  Google Scholar

[3]

B. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations, Indiana Univ. Math. J., 60 (2011), 101-119. doi: 10.1512/iumj.2011.60.4222.  Google Scholar

[4]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings, Indiana Univ. Math. J., 58 (2009), 1565-1589. doi: 10.1512/iumj.2009.58.3539.  Google Scholar

[5]

C. Borell, Brownian motion in a convex ring and quasiconcavity, Comm. Math. Phys., 86 (1982), 143-147. doi: 10.1007/BF01205665.  Google Scholar

[6]

C. Borell, A note on parabolic convexity and heat conduction, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393.  Google Scholar

[7]

C. Borell, Diffusion equations and geometric inequalities, Potential Anal., 12 (2000), 49-71. doi: 10.1023/A:1008641618547.  Google Scholar

[8]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations, Duke Math. J., 52 (1985), 431-456. doi: 10.1215/S0012-7094-85-05221-4.  Google Scholar

[9]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. Part. Diff. Eq., 7 (1982), 1337-1379. doi: 10.1080/03605308208820254.  Google Scholar

[10]

S.-Y. A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 28 (2010), 1151-1164. doi: 10.3934/dcds.2010.28.1151.  Google Scholar

[11]

C. Q. Chen, On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions, Discrete Contin. Dyn. Syst. A, 34 (2014), 3383-3402. doi: 10.3934/dcds.2014.34.3383.  Google Scholar

[12]

C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations, Acta Mathematica Sinica, English Series, 29 (2013), 651-674. doi: 10.1007/s10114-012-1495-z.  Google Scholar

[13]

C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint, ().   Google Scholar

[14]

C. Q. Chen and S. J. Shi, Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations, Science China Mathematics, 54 (2011), 2063-2080. doi: 10.1007/s11425-011-4277-7.  Google Scholar

[15]

R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions, J. London Math. Soc., 32 (1957), 286-294.  Google Scholar

[16]

P. Guan and L. Xu, Convexity estimates for level surfaces of quasiconcave solutions to fully nonlinear elliptic equations, J. Reine Angew. Math., 680 (2013), 41-67. doi: 10.1515/crelle.2012.038.  Google Scholar

[17]

B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation, manuscripta math., 138 (2012), 89-118. doi: 10.1007/s00229-011-0485-2.  Google Scholar

[18]

K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr., 283 (2010), 1526-1548. doi: 10.1002/mana.200910242.  Google Scholar

[19]

K. Ishige and P. Salani, On a new kind of convexity for solutions of parabolic problems, Discret. Contin. Dyn. Syst. Ser. S, 4 (2011), 851-864. doi: 10.3934/dcdss.2011.4.851.  Google Scholar

[20]

K. Ishige and P. Salani, Parabolic power concavity and parabolic boundary value problems, Math. Ann., 358 (2014), 1091-1117. doi: 10.1007/s00208-013-0991-5.  Google Scholar

[21]

B. Kawhol, Rearrangements and Convexity of Level Sets in PDE, Springer Lecture Notes in Math. 1150, 1985.  Google Scholar

[22]

N. Korevaar, Convexity of level sets for solutions to elliptic ring problems, Comm. Part. Diff. Eq., 15 (1990), 541-556. doi: 10.1080/03605309908820698.  Google Scholar

[23]

J. Lewis, Capacitary functions in convex rings, Arch. Rat. Mech. Anal., 66 (1977), 201-224.  Google Scholar

[24]

G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[25]

M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A, 2 (1983), 71-75.  Google Scholar

[26]

M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Diff. Equations, 67 (1987), 344-358. doi: 10.1016/0022-0396(87)90131-8.  Google Scholar

[27]

X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian curvature estimates for the convex level sets of $p$-harmonic functions, Comm. Pure Appl. Math., 63 (2010), 935-971. doi: 10.1002/cpa.20318.  Google Scholar

[28]

M. Ortel and W. Schneider, Curvature of level curves of harmonic functions, Canad. Math. Bull., 26 (1983), 399-405. doi: 10.4153/CMB-1983-066-4.  Google Scholar

[29]

M. Shiffman, On surfaces of stationary area bounded by two circles or convex curves in parallel planes, Annals of Math., 63 (1956), 77-90. doi: 10.2307/1969991.  Google Scholar

[30]

F. Treves, A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., 24 (1971), 71-115. doi: 10.1002/cpa.3160240107.  Google Scholar

[31]

L. Xu, A microscopic convexity theorem of level sets for solutions to elliptic equations, Cal. Var. PDE, 40 (2011), 51-63. doi: 10.1007/s00526-010-0333-3.  Google Scholar

show all references

References:
[1]

L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.  Google Scholar

[2]

B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations, Inventiones Math., 177 (2009), 307-335. doi: 10.1007/s00222-009-0179-5.  Google Scholar

[3]

B. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations, Indiana Univ. Math. J., 60 (2011), 101-119. doi: 10.1512/iumj.2011.60.4222.  Google Scholar

[4]

C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings, Indiana Univ. Math. J., 58 (2009), 1565-1589. doi: 10.1512/iumj.2009.58.3539.  Google Scholar

[5]

C. Borell, Brownian motion in a convex ring and quasiconcavity, Comm. Math. Phys., 86 (1982), 143-147. doi: 10.1007/BF01205665.  Google Scholar

[6]

C. Borell, A note on parabolic convexity and heat conduction, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393.  Google Scholar

[7]

C. Borell, Diffusion equations and geometric inequalities, Potential Anal., 12 (2000), 49-71. doi: 10.1023/A:1008641618547.  Google Scholar

[8]

L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations, Duke Math. J., 52 (1985), 431-456. doi: 10.1215/S0012-7094-85-05221-4.  Google Scholar

[9]

L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. Part. Diff. Eq., 7 (1982), 1337-1379. doi: 10.1080/03605308208820254.  Google Scholar

[10]

S.-Y. A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 28 (2010), 1151-1164. doi: 10.3934/dcds.2010.28.1151.  Google Scholar

[11]

C. Q. Chen, On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions, Discrete Contin. Dyn. Syst. A, 34 (2014), 3383-3402. doi: 10.3934/dcds.2014.34.3383.  Google Scholar

[12]

C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations, Acta Mathematica Sinica, English Series, 29 (2013), 651-674. doi: 10.1007/s10114-012-1495-z.  Google Scholar

[13]

C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint, ().   Google Scholar

[14]

C. Q. Chen and S. J. Shi, Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations, Science China Mathematics, 54 (2011), 2063-2080. doi: 10.1007/s11425-011-4277-7.  Google Scholar

[15]

R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions, J. London Math. Soc., 32 (1957), 286-294.  Google Scholar

[16]

P. Guan and L. Xu, Convexity estimates for level surfaces of quasiconcave solutions to fully nonlinear elliptic equations, J. Reine Angew. Math., 680 (2013), 41-67. doi: 10.1515/crelle.2012.038.  Google Scholar

[17]

B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation, manuscripta math., 138 (2012), 89-118. doi: 10.1007/s00229-011-0485-2.  Google Scholar

[18]

K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr., 283 (2010), 1526-1548. doi: 10.1002/mana.200910242.  Google Scholar

[19]

K. Ishige and P. Salani, On a new kind of convexity for solutions of parabolic problems, Discret. Contin. Dyn. Syst. Ser. S, 4 (2011), 851-864. doi: 10.3934/dcdss.2011.4.851.  Google Scholar

[20]

K. Ishige and P. Salani, Parabolic power concavity and parabolic boundary value problems, Math. Ann., 358 (2014), 1091-1117. doi: 10.1007/s00208-013-0991-5.  Google Scholar

[21]

B. Kawhol, Rearrangements and Convexity of Level Sets in PDE, Springer Lecture Notes in Math. 1150, 1985.  Google Scholar

[22]

N. Korevaar, Convexity of level sets for solutions to elliptic ring problems, Comm. Part. Diff. Eq., 15 (1990), 541-556. doi: 10.1080/03605309908820698.  Google Scholar

[23]

J. Lewis, Capacitary functions in convex rings, Arch. Rat. Mech. Anal., 66 (1977), 201-224.  Google Scholar

[24]

G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996. doi: 10.1142/3302.  Google Scholar

[25]

M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A, 2 (1983), 71-75.  Google Scholar

[26]

M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Diff. Equations, 67 (1987), 344-358. doi: 10.1016/0022-0396(87)90131-8.  Google Scholar

[27]

X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian curvature estimates for the convex level sets of $p$-harmonic functions, Comm. Pure Appl. Math., 63 (2010), 935-971. doi: 10.1002/cpa.20318.  Google Scholar

[28]

M. Ortel and W. Schneider, Curvature of level curves of harmonic functions, Canad. Math. Bull., 26 (1983), 399-405. doi: 10.4153/CMB-1983-066-4.  Google Scholar

[29]

M. Shiffman, On surfaces of stationary area bounded by two circles or convex curves in parallel planes, Annals of Math., 63 (1956), 77-90. doi: 10.2307/1969991.  Google Scholar

[30]

F. Treves, A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., 24 (1971), 71-115. doi: 10.1002/cpa.3160240107.  Google Scholar

[31]

L. Xu, A microscopic convexity theorem of level sets for solutions to elliptic equations, Cal. Var. PDE, 40 (2011), 51-63. doi: 10.1007/s00526-010-0333-3.  Google Scholar

[1]

Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081

[2]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[3]

Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901

[4]

Byung-Hoon Hwang, Ho Lee, Seok-Bae Yun. Relativistic BGK model for massless particles in the FLRW spacetime. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021031

[5]

Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete & Continuous Dynamical Systems, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383

[6]

Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341

[7]

Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679

[8]

Ning-An Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1317-1325. doi: 10.3934/cpaa.2014.13.1317

[9]

Makram Hamouda, Mohamed Ali Hamza, Alessandro Palmieri. A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime. Communications on Pure & Applied Analysis, 2021, 20 (11) : 3703-3721. doi: 10.3934/cpaa.2021127

[10]

Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems & Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241

[11]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[12]

Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial & Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171

[13]

Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144

[14]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070

[15]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[16]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[17]

Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems & Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459

[18]

Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete & Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228

[19]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[20]

Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems & Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (164)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]