-
Previous Article
On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs
- DCDS Home
- This Issue
-
Next Article
Dominated splitting, partial hyperbolicity and positive entropy
On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions
1. | Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang Province, China |
References:
[1] |
L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. |
[2] |
B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations, Inventiones Math., 177 (2009), 307-335.
doi: 10.1007/s00222-009-0179-5. |
[3] |
B. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations, Indiana Univ. Math. J., 60 (2011), 101-119.
doi: 10.1512/iumj.2011.60.4222. |
[4] |
C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings, Indiana Univ. Math. J., 58 (2009), 1565-1589.
doi: 10.1512/iumj.2009.58.3539. |
[5] |
C. Borell, Brownian motion in a convex ring and quasiconcavity, Comm. Math. Phys., 86 (1982), 143-147.
doi: 10.1007/BF01205665. |
[6] |
C. Borell, A note on parabolic convexity and heat conduction, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393. |
[7] |
C. Borell, Diffusion equations and geometric inequalities, Potential Anal., 12 (2000), 49-71.
doi: 10.1023/A:1008641618547. |
[8] |
L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations, Duke Math. J., 52 (1985), 431-456.
doi: 10.1215/S0012-7094-85-05221-4. |
[9] |
L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. Part. Diff. Eq., 7 (1982), 1337-1379.
doi: 10.1080/03605308208820254. |
[10] |
S.-Y. A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 28 (2010), 1151-1164.
doi: 10.3934/dcds.2010.28.1151. |
[11] |
C. Q. Chen, On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions, Discrete Contin. Dyn. Syst. A, 34 (2014), 3383-3402.
doi: 10.3934/dcds.2014.34.3383. |
[12] |
C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations, Acta Mathematica Sinica, English Series, 29 (2013), 651-674.
doi: 10.1007/s10114-012-1495-z. |
[13] |
C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint, ().
|
[14] |
C. Q. Chen and S. J. Shi, Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations, Science China Mathematics, 54 (2011), 2063-2080.
doi: 10.1007/s11425-011-4277-7. |
[15] |
R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions, J. London Math. Soc., 32 (1957), 286-294. |
[16] |
P. Guan and L. Xu, Convexity estimates for level surfaces of quasiconcave solutions to fully nonlinear elliptic equations, J. Reine Angew. Math., 680 (2013), 41-67.
doi: 10.1515/crelle.2012.038. |
[17] |
B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation, manuscripta math., 138 (2012), 89-118.
doi: 10.1007/s00229-011-0485-2. |
[18] |
K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr., 283 (2010), 1526-1548.
doi: 10.1002/mana.200910242. |
[19] |
K. Ishige and P. Salani, On a new kind of convexity for solutions of parabolic problems, Discret. Contin. Dyn. Syst. Ser. S, 4 (2011), 851-864.
doi: 10.3934/dcdss.2011.4.851. |
[20] |
K. Ishige and P. Salani, Parabolic power concavity and parabolic boundary value problems, Math. Ann., 358 (2014), 1091-1117.
doi: 10.1007/s00208-013-0991-5. |
[21] |
B. Kawhol, Rearrangements and Convexity of Level Sets in PDE, Springer Lecture Notes in Math. 1150, 1985. |
[22] |
N. Korevaar, Convexity of level sets for solutions to elliptic ring problems, Comm. Part. Diff. Eq., 15 (1990), 541-556.
doi: 10.1080/03605309908820698. |
[23] |
J. Lewis, Capacitary functions in convex rings, Arch. Rat. Mech. Anal., 66 (1977), 201-224. |
[24] |
G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
doi: 10.1142/3302. |
[25] |
M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A, 2 (1983), 71-75. |
[26] |
M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Diff. Equations, 67 (1987), 344-358.
doi: 10.1016/0022-0396(87)90131-8. |
[27] |
X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian curvature estimates for the convex level sets of $p$-harmonic functions, Comm. Pure Appl. Math., 63 (2010), 935-971.
doi: 10.1002/cpa.20318. |
[28] |
M. Ortel and W. Schneider, Curvature of level curves of harmonic functions, Canad. Math. Bull., 26 (1983), 399-405.
doi: 10.4153/CMB-1983-066-4. |
[29] |
M. Shiffman, On surfaces of stationary area bounded by two circles or convex curves in parallel planes, Annals of Math., 63 (1956), 77-90.
doi: 10.2307/1969991. |
[30] |
F. Treves, A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., 24 (1971), 71-115.
doi: 10.1002/cpa.3160240107. |
[31] |
L. Xu, A microscopic convexity theorem of level sets for solutions to elliptic equations, Cal. Var. PDE, 40 (2011), 51-63.
doi: 10.1007/s00526-010-0333-3. |
show all references
References:
[1] |
L. V. Ahlfors, Conformal Invariants: Topics in Geometric Function Theory, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. |
[2] |
B. Bian and P. Guan, A microscopic convexity principle for nonlinear partial differential equations, Inventiones Math., 177 (2009), 307-335.
doi: 10.1007/s00222-009-0179-5. |
[3] |
B. Bian, P. Guan, X. N. Ma and L. Xu, A constant rank theorem for quasiconcave solutions of fully nonlinear partial differential equations, Indiana Univ. Math. J., 60 (2011), 101-119.
doi: 10.1512/iumj.2011.60.4222. |
[4] |
C. Bianchini, M. Longinetti and P. Salani, Quasiconcave solutions to elliptic problems in convex rings, Indiana Univ. Math. J., 58 (2009), 1565-1589.
doi: 10.1512/iumj.2009.58.3539. |
[5] |
C. Borell, Brownian motion in a convex ring and quasiconcavity, Comm. Math. Phys., 86 (1982), 143-147.
doi: 10.1007/BF01205665. |
[6] |
C. Borell, A note on parabolic convexity and heat conduction, Ann. Inst. H. Poincaré Probab. Statist., 32 (1996), 387-393. |
[7] |
C. Borell, Diffusion equations and geometric inequalities, Potential Anal., 12 (2000), 49-71.
doi: 10.1023/A:1008641618547. |
[8] |
L. Caffarelli and A. Friedman, Convexity of solutions of some semilinear elliptic equations, Duke Math. J., 52 (1985), 431-456.
doi: 10.1215/S0012-7094-85-05221-4. |
[9] |
L. Caffarelli and J. Spruck, Convexity properties of solutions to some classical variational problems, Comm. Part. Diff. Eq., 7 (1982), 1337-1379.
doi: 10.1080/03605308208820254. |
[10] |
S.-Y. A. Chang, X. N. Ma and P. Yang, Principal curvature estimates for the convex level sets of semilinear elliptic equations, Discrete Contin. Dyn. Syst., 28 (2010), 1151-1164.
doi: 10.3934/dcds.2010.28.1151. |
[11] |
C. Q. Chen, On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions, Discrete Contin. Dyn. Syst. A, 34 (2014), 3383-3402.
doi: 10.3934/dcds.2014.34.3383. |
[12] |
C. Q. Chen and B. W. Hu, A microscopic convexity principle for spacetime convex solutions of fully nonlinear parabolic equations, Acta Mathematica Sinica, English Series, 29 (2013), 651-674.
doi: 10.1007/s10114-012-1495-z. |
[13] |
C. Q. Chen, X. N. Ma and P. Salani, On the spacetime quasiconcave solutions of the heat equation,, preprint, ().
|
[14] |
C. Q. Chen and S. J. Shi, Curvature estimates for the level sets of spatial quasiconcave solutions to a class of parabolic equations, Science China Mathematics, 54 (2011), 2063-2080.
doi: 10.1007/s11425-011-4277-7. |
[15] |
R. Gabriel, A result concerning convex level surfaces of 3-dimensional harmonic functions, J. London Math. Soc., 32 (1957), 286-294. |
[16] |
P. Guan and L. Xu, Convexity estimates for level surfaces of quasiconcave solutions to fully nonlinear elliptic equations, J. Reine Angew. Math., 680 (2013), 41-67.
doi: 10.1515/crelle.2012.038. |
[17] |
B. W. Hu and X. N. Ma, Constant rank theorem of the spacetime convex solution of heat equation, manuscripta math., 138 (2012), 89-118.
doi: 10.1007/s00229-011-0485-2. |
[18] |
K. Ishige and P. Salani, Parabolic quasi-concavity for solutions to parabolic problems in convex rings, Math. Nachr., 283 (2010), 1526-1548.
doi: 10.1002/mana.200910242. |
[19] |
K. Ishige and P. Salani, On a new kind of convexity for solutions of parabolic problems, Discret. Contin. Dyn. Syst. Ser. S, 4 (2011), 851-864.
doi: 10.3934/dcdss.2011.4.851. |
[20] |
K. Ishige and P. Salani, Parabolic power concavity and parabolic boundary value problems, Math. Ann., 358 (2014), 1091-1117.
doi: 10.1007/s00208-013-0991-5. |
[21] |
B. Kawhol, Rearrangements and Convexity of Level Sets in PDE, Springer Lecture Notes in Math. 1150, 1985. |
[22] |
N. Korevaar, Convexity of level sets for solutions to elliptic ring problems, Comm. Part. Diff. Eq., 15 (1990), 541-556.
doi: 10.1080/03605309908820698. |
[23] |
J. Lewis, Capacitary functions in convex rings, Arch. Rat. Mech. Anal., 66 (1977), 201-224. |
[24] |
G. Lieberman, Second Order Parabolic Differential Equations, World Scientific, 1996.
doi: 10.1142/3302. |
[25] |
M. Longinetti, Convexity of the level lines of harmonic functions, (Italian) Boll. Un. Mat. Ital. A, 2 (1983), 71-75. |
[26] |
M. Longinetti, On minimal surfaces bounded by two convex curves in parallel planes, J. Diff. Equations, 67 (1987), 344-358.
doi: 10.1016/0022-0396(87)90131-8. |
[27] |
X. N. Ma, Q. Z. Ou and W. Zhang, Gaussian curvature estimates for the convex level sets of $p$-harmonic functions, Comm. Pure Appl. Math., 63 (2010), 935-971.
doi: 10.1002/cpa.20318. |
[28] |
M. Ortel and W. Schneider, Curvature of level curves of harmonic functions, Canad. Math. Bull., 26 (1983), 399-405.
doi: 10.4153/CMB-1983-066-4. |
[29] |
M. Shiffman, On surfaces of stationary area bounded by two circles or convex curves in parallel planes, Annals of Math., 63 (1956), 77-90.
doi: 10.2307/1969991. |
[30] |
F. Treves, A new method of proof of the subelliptic estimates, Commun. Pure Appl. Math., 24 (1971), 71-115.
doi: 10.1002/cpa.3160240107. |
[31] |
L. Xu, A microscopic convexity theorem of level sets for solutions to elliptic equations, Cal. Var. PDE, 40 (2011), 51-63.
doi: 10.1007/s00526-010-0333-3. |
[1] |
Gábor Székelyhidi, Ben Weinkove. On a constant rank theorem for nonlinear elliptic PDEs. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6523-6532. doi: 10.3934/dcds.2016081 |
[2] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[3] |
Makoto Nakamura. Remarks on a dispersive equation in de Sitter spacetime. Conference Publications, 2015, 2015 (special) : 901-905. doi: 10.3934/proc.2015.0901 |
[4] |
Byung-Hoon Hwang, Ho Lee, Seok-Bae Yun. Relativistic BGK model for massless particles in the FLRW spacetime. Kinetic and Related Models, 2021, 14 (6) : 949-959. doi: 10.3934/krm.2021031 |
[5] |
Chuanqiang Chen. On the microscopic spacetime convexity principle of fully nonlinear parabolic equations I: Spacetime convex solutions. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 3383-3402. doi: 10.3934/dcds.2014.34.3383 |
[6] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[7] |
Karen Yagdjian. The semilinear Klein-Gordon equation in de Sitter spacetime. Discrete and Continuous Dynamical Systems - S, 2009, 2 (3) : 679-696. doi: 10.3934/dcdss.2009.2.679 |
[8] |
Ning-An Lai, Jinglei Zhao. Potential well and exact boundary controllability for radial semilinear wave equations on Schwarzschild spacetime. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1317-1325. doi: 10.3934/cpaa.2014.13.1317 |
[9] |
Nguyen Duc Vuong, Tran Ngoc Thang. Optimizing over Pareto set of semistrictly quasiconcave vector maximization and application to stochastic portfolio selection. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022029 |
[10] |
Makram Hamouda, Mohamed Ali Hamza, Alessandro Palmieri. A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein-de Sitter spacetime. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3703-3721. doi: 10.3934/cpaa.2021127 |
[11] |
Bin Dong, Aichi Chien, Yu Mao, Jian Ye, Fernando Vinuela, Stanley Osher. Level set based brain aneurysm capturing in 3D. Inverse Problems and Imaging, 2010, 4 (2) : 241-255. doi: 10.3934/ipi.2010.4.241 |
[12] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[13] |
Li-Fang Dai, Mao-Lin Liang, Wei-Yuan Ma. Optimization problems on the rank of the solution to left and right inverse eigenvalue problem. Journal of Industrial and Management Optimization, 2015, 11 (1) : 171-183. doi: 10.3934/jimo.2015.11.171 |
[14] |
Yuan Li. Extremal solution and Liouville theorem for anisotropic elliptic equations. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4063-4082. doi: 10.3934/cpaa.2021144 |
[15] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems and Imaging, 2021, 15 (2) : 315-338. doi: 10.3934/ipi.2020070 |
[16] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[17] |
Zhenlin Guo, Ping Lin, Guangrong Ji, Yangfan Wang. Retinal vessel segmentation using a finite element based binary level set method. Inverse Problems and Imaging, 2014, 8 (2) : 459-473. doi: 10.3934/ipi.2014.8.459 |
[18] |
Yoshikazu Giga, Hiroyoshi Mitake, Hung V. Tran. Remarks on large time behavior of level-set mean curvature flow equations with driving and source terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (10) : 3983-3999. doi: 10.3934/dcdsb.2019228 |
[19] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[20] |
Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems and Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]