• Previous Article
    Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate
  • DCDS Home
  • This Issue
  • Next Article
    On the microscopic spacetime convexity principle for fully nonlinear parabolic equations II: Spacetime quasiconcave solutions
September  2016, 36(9): 4813-4837. doi: 10.3934/dcds.2016008

On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs

1. 

School of Electronic Engineering, Dublin City University, Dublin 9

2. 

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

3. 

Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge CB3 0WA

Received  February 2014 Revised  March 2016 Published  May 2016

The paper is concerned with the discretization and solution of DAEs of index $1$ and subject to a highly oscillatory forcing term. Separate asymptotic expansions in inverse powers of the oscillatory parameter are constructed to approximate the differential and algebraic variables of the DAEs. The series are truncated to enable practical implementation. Numerical experiments are provided to illustrate the effectiveness of the method.
Citation: Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008
References:
[1]

W. E, A. Abdulle, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method, Acta Numer., 21 (2012), 1-87. doi: 10.1017/S0962492912000025.

[2]

M. Condon, A. Deaño, J. Gao and A. Iserles, Asymptotic numerical algorithm for second order differential equations with multiple frequencies, Calcolo, 21 (2013), 1-31.

[3]

M. Condon, A. Deaño and A. Iserles, On Asymptotic-Numerical Solvers for Differential Equations with Highly Oscillatory Forcing Terms, DAMTP Tech. Rep. 2009/NA05.

[4]

M. Condon, A. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discr. Cont. Dynamical Sys., 28 (2010), 1345-1367. doi: 10.3934/dcds.2010.28.1345.

[5]

M. Condon, A. Deaño, A. Iserles and K. Kropielnicka, Efficient computation of delay differential equations with highly oscillatory terms, ESAIM Math. Model. Numer. Anal., 46 (2012), 1407-1420. doi: 10.1051/m2an/2012004.

[6]

A. Iserles and S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. Royal Soc. A., 461 (2005), 1383-1399. doi: 10.1098/rspa.2004.1401.

[7]

D. E. Johnson, J. R. Johnson and J. L. Hilburn, Electric Circuit Analysis, $2^{nd}$ edition, Prentice-Hall, New Jersey, 1992.

[8]

L. Malesani and P. Tenti, Three-phase AC/DC PWM converter with sinusoidal AC currents and minimum filter requirements, IEEE Trans. Ind. Appl., IA-23 (1987), 71-77. doi: 10.1109/TIA.1987.4504868.

[9]

R. Pulch, Finite difference methods for multi time scale differential algebraic equations, ZAMM-Z Angew Math., 83 (2003), 571-583. doi: 10.1002/zamm.200310042.

[10]

R. Pulch, M.Günther and S. Knorr, Multirate partial differential algebraic equations for simulating radio frequency signals, Eur. J. Appl. Math., 18 (2007), 709-743. doi: 10.1017/S0956792507007188.

[11]

A. H. Robbins and W. Miller, Circuit Analysis: Theory and Practice, $5^{nd}$ edition, Cengage Learning, Boston, 2012.

[12]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605. doi: 10.1093/imanum/drn031.

[13]

R. E. Scheid, The accurate numerical solution of highly oscillatory ordinary differential equations, Math. Comp., 41 (1983), 487-509. doi: 10.1090/S0025-5718-1983-0717698-9.

[14]

M. Selva Soto M. and C. Tischendorf, Numerical analysis of DAEs from coupled circuit and semiconductor simulation, Appl. Numer. Math., 53 (2005), 471-488. doi: 10.1016/j.apnum.2004.08.009.

[15]

C. Tischendorf, Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation, Modeling and numerical analysis, Habilitationsschrift, Inst. für Math., Humboldt-Univ. zu Berlin, 2004.

show all references

References:
[1]

W. E, A. Abdulle, B. Engquist and E. Vanden-Eijnden, The heterogeneous multiscale method, Acta Numer., 21 (2012), 1-87. doi: 10.1017/S0962492912000025.

[2]

M. Condon, A. Deaño, J. Gao and A. Iserles, Asymptotic numerical algorithm for second order differential equations with multiple frequencies, Calcolo, 21 (2013), 1-31.

[3]

M. Condon, A. Deaño and A. Iserles, On Asymptotic-Numerical Solvers for Differential Equations with Highly Oscillatory Forcing Terms, DAMTP Tech. Rep. 2009/NA05.

[4]

M. Condon, A. Deaño and A. Iserles, On systems of differential equations with extrinsic oscillation, Discr. Cont. Dynamical Sys., 28 (2010), 1345-1367. doi: 10.3934/dcds.2010.28.1345.

[5]

M. Condon, A. Deaño, A. Iserles and K. Kropielnicka, Efficient computation of delay differential equations with highly oscillatory terms, ESAIM Math. Model. Numer. Anal., 46 (2012), 1407-1420. doi: 10.1051/m2an/2012004.

[6]

A. Iserles and S. P. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives, Proc. Royal Soc. A., 461 (2005), 1383-1399. doi: 10.1098/rspa.2004.1401.

[7]

D. E. Johnson, J. R. Johnson and J. L. Hilburn, Electric Circuit Analysis, $2^{nd}$ edition, Prentice-Hall, New Jersey, 1992.

[8]

L. Malesani and P. Tenti, Three-phase AC/DC PWM converter with sinusoidal AC currents and minimum filter requirements, IEEE Trans. Ind. Appl., IA-23 (1987), 71-77. doi: 10.1109/TIA.1987.4504868.

[9]

R. Pulch, Finite difference methods for multi time scale differential algebraic equations, ZAMM-Z Angew Math., 83 (2003), 571-583. doi: 10.1002/zamm.200310042.

[10]

R. Pulch, M.Günther and S. Knorr, Multirate partial differential algebraic equations for simulating radio frequency signals, Eur. J. Appl. Math., 18 (2007), 709-743. doi: 10.1017/S0956792507007188.

[11]

A. H. Robbins and W. Miller, Circuit Analysis: Theory and Practice, $5^{nd}$ edition, Cengage Learning, Boston, 2012.

[12]

J. M. Sanz-Serna, Modulated Fourier expansions and heterogeneous multiscale methods, IMA J. Numer. Anal., 29 (2009), 595-605. doi: 10.1093/imanum/drn031.

[13]

R. E. Scheid, The accurate numerical solution of highly oscillatory ordinary differential equations, Math. Comp., 41 (1983), 487-509. doi: 10.1090/S0025-5718-1983-0717698-9.

[14]

M. Selva Soto M. and C. Tischendorf, Numerical analysis of DAEs from coupled circuit and semiconductor simulation, Appl. Numer. Math., 53 (2005), 471-488. doi: 10.1016/j.apnum.2004.08.009.

[15]

C. Tischendorf, Coupled Systems of Differential Algebraic and Partial Differential Equations in Circuit and Device Simulation, Modeling and numerical analysis, Habilitationsschrift, Inst. für Math., Humboldt-Univ. zu Berlin, 2004.

[1]

Philippe Chartier, Nicolas Crouseilles, Mohammed Lemou, Florian Méhats. Averaging of highly-oscillatory transport equations. Kinetic and Related Models, 2020, 13 (6) : 1107-1133. doi: 10.3934/krm.2020039

[2]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[3]

Kamil Aida-Zade, Jamila Asadova. Numerical solution to optimal control problems of oscillatory processes. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021166

[4]

Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293

[5]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete and Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[6]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[7]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete and Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[8]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[9]

R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435

[10]

John R. Graef, R. Savithri, E. Thandapani. Oscillatory properties of third order neutral delay differential equations. Conference Publications, 2003, 2003 (Special) : 342-350. doi: 10.3934/proc.2003.2003.342

[11]

Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079

[12]

Zuji Guo, Zhaoli Liu. Perturbed elliptic equations with oscillatory nonlinearities. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3567-3585. doi: 10.3934/dcds.2012.32.3567

[13]

Vu Hoang Linh, Volker Mehrmann. Spectral analysis for linear differential-algebraic equations. Conference Publications, 2011, 2011 (Special) : 991-1000. doi: 10.3934/proc.2011.2011.991

[14]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[15]

Kyril Tintarev. Positive solutions of elliptic equations with a critical oscillatory nonlinearity. Conference Publications, 2007, 2007 (Special) : 974-981. doi: 10.3934/proc.2007.2007.974

[16]

Yu-Ting Lin, John Malik, Hau-Tieng Wu. Wave-shape oscillatory model for nonstationary periodic time series analysis. Foundations of Data Science, 2021, 3 (2) : 99-131. doi: 10.3934/fods.2021009

[17]

Lutz Recke, Anatoly Samoilenko, Alexey Teplinsky, Viktor Tkachenko, Serhiy Yanchuk. Frequency locking of modulated waves. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 847-875. doi: 10.3934/dcds.2011.31.847

[18]

José M. Arrieta, Manuel Villanueva-Pesqueira. Elliptic and parabolic problems in thin domains with doubly weak oscillatory boundary. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1891-1914. doi: 10.3934/cpaa.2020083

[19]

Arnulf Jentzen. Taylor expansions of solutions of stochastic partial differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 515-557. doi: 10.3934/dcdsb.2010.14.515

[20]

José M. Arrieta, Ariadne Nogueira, Marcone C. Pereira. Nonlinear elliptic equations with concentrating reaction terms at an oscillatory boundary. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4217-4246. doi: 10.3934/dcdsb.2019079

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (147)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]