September  2016, 36(9): 4839-4870. doi: 10.3934/dcds.2016009

Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate

1. 

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China, China, China, China

Received  June 2015 Revised  January 2016 Published  May 2016

In this paper, we study the asymptotic behavior of solution to the initial boundary value problem for the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line $\mathbb{R}_{+}:=(0,\infty).$ Our idea mainly comes from [10] which describes the large time behavior of solution for the non-isentropic Navier-Stokes equations in a half line. The electric field brings us some additional troubles compared with Navier-Stokes equations in the absence of the electric field. We obtain the convergence rate of global solution towards corresponding stationary solution. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proofs are given by a weighted energy method.
Citation: Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009
References:
[1]

J. Carr, Applications of Centre Manifold Theory,, Springer Verlag, (1981).   Google Scholar

[2]

F. Chen, Introduction to Plasma Physics and Controlled Fusion,, Second edition, (1984).   Google Scholar

[3]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math., 61 (2003), 345.   Google Scholar

[4]

R. J. Duan and S. Q. Liu, Stability of rarefaction waves of the Navier-Stokes-Poisson system,, J. Differential Equations, 258 (2015), 2495.  doi: 10.1016/j.jde.2014.12.019.  Google Scholar

[5]

R. J. Duan and S. Q. Liu, Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system,, SIAM J. Math. Anal., 47 (2015), 3585.  doi: 10.1137/140995179.  Google Scholar

[6]

R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion,, Sci. China Math., 59 (2016), 67.  doi: 10.1007/s11425-015-5059-4.  Google Scholar

[7]

R. J. Duan and X. F. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations,, Comm. Pure Appl. Anal., 12 (2013), 985.  doi: 10.3934/cpaa.2013.12.985.  Google Scholar

[8]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation,, J. Differential Equations, 246 (2009), 4077.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[9]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[10]

S. Kawashima, T. Nakamura, S. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201.  doi: 10.1142/S0218202510004908.  Google Scholar

[11]

S. Kawashima, S. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[12]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[13]

S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint, ().   Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary,, Arch. Ration. Mech. Anal., 146 (1999), 1.  doi: 10.1007/s002050050134.  Google Scholar

[16]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449.  doi: 10.1007/s002200100517.  Google Scholar

[17]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[18]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, Journal of Hyperbolic Differential Equations, 8 (2011), 651.  doi: 10.1142/S0219891611002524.  Google Scholar

[19]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[20]

L. Z. Ruan, H. Y. Yin and C. J. Zhu, The stability of the superposition of rarefaction wave and contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint., ().   Google Scholar

[21]

Z. Tan, T. Yang, H. J. Zhao and Q. Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547.  doi: 10.1137/120876174.  Google Scholar

[22]

H. Y. Yin, J. S. Zhang and C. J. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system,, Nonlinear Analysis: Real World Applications, 31 (2016), 492.  doi: 10.1016/j.nonrwa.2016.01.020.  Google Scholar

[23]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, J.Differential Equations, 250 (2011), 866.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

[24]

F. Zhou and Y. P. Li, Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line,, Bound. Value Probl., 2013 (2013), 1.  doi: 10.1186/1687-2770-2013-124.  Google Scholar

show all references

References:
[1]

J. Carr, Applications of Centre Manifold Theory,, Springer Verlag, (1981).   Google Scholar

[2]

F. Chen, Introduction to Plasma Physics and Controlled Fusion,, Second edition, (1984).   Google Scholar

[3]

D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math., 61 (2003), 345.   Google Scholar

[4]

R. J. Duan and S. Q. Liu, Stability of rarefaction waves of the Navier-Stokes-Poisson system,, J. Differential Equations, 258 (2015), 2495.  doi: 10.1016/j.jde.2014.12.019.  Google Scholar

[5]

R. J. Duan and S. Q. Liu, Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system,, SIAM J. Math. Anal., 47 (2015), 3585.  doi: 10.1137/140995179.  Google Scholar

[6]

R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion,, Sci. China Math., 59 (2016), 67.  doi: 10.1007/s11425-015-5059-4.  Google Scholar

[7]

R. J. Duan and X. F. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations,, Comm. Pure Appl. Anal., 12 (2013), 985.  doi: 10.3934/cpaa.2013.12.985.  Google Scholar

[8]

F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation,, J. Differential Equations, 246 (2009), 4077.  doi: 10.1016/j.jde.2009.01.017.  Google Scholar

[9]

S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97.  doi: 10.1007/BF01212358.  Google Scholar

[10]

S. Kawashima, T. Nakamura, S. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201.  doi: 10.1142/S0218202510004908.  Google Scholar

[11]

S. Kawashima, S. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483.  doi: 10.1007/s00220-003-0909-2.  Google Scholar

[12]

H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, Arch. Ration. Mech. Anal., 196 (2010), 681.  doi: 10.1007/s00205-009-0255-4.  Google Scholar

[13]

S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint, ().   Google Scholar

[14]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990).  doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[15]

A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary,, Arch. Ration. Mech. Anal., 146 (1999), 1.  doi: 10.1007/s002050050134.  Google Scholar

[16]

A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449.  doi: 10.1007/s002200100517.  Google Scholar

[17]

T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94.  doi: 10.1016/j.jde.2007.06.016.  Google Scholar

[18]

T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, Journal of Hyperbolic Differential Equations, 8 (2011), 651.  doi: 10.1142/S0219891611002524.  Google Scholar

[19]

M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107.   Google Scholar

[20]

L. Z. Ruan, H. Y. Yin and C. J. Zhu, The stability of the superposition of rarefaction wave and contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint., ().   Google Scholar

[21]

Z. Tan, T. Yang, H. J. Zhao and Q. Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547.  doi: 10.1137/120876174.  Google Scholar

[22]

H. Y. Yin, J. S. Zhang and C. J. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system,, Nonlinear Analysis: Real World Applications, 31 (2016), 492.  doi: 10.1016/j.nonrwa.2016.01.020.  Google Scholar

[23]

G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, J.Differential Equations, 250 (2011), 866.  doi: 10.1016/j.jde.2010.07.035.  Google Scholar

[24]

F. Zhou and Y. P. Li, Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line,, Bound. Value Probl., 2013 (2013), 1.  doi: 10.1186/1687-2770-2013-124.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[4]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[5]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[6]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[7]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[8]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[9]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[10]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[11]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[14]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[15]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[16]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[17]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[18]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[19]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[20]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (42)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]