\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Generic absence of finite blocking for interior points of Birkhoff billiards

Abstract Related Papers Cited by
  • Let $x$ and $y$ be points in a billiard table $M=M(\sigma)$ in $\mathbb{\mathbb{R}}^{2}$ that is bounded by a curve $\sigma$. We assume $\sigma\in\Sigma_{r}$ with $r\geq2$, where $\Sigma_{r}$ is the set of simple closed $C^{r}$ curves in $\mathbb{R}^{2}$ with positive curvature. A subset $B$ of $M\setminus\{x,y\}$ is called a blocking set for the pair $(x,y)$ if every billiard path in $M$ from $x$ to $y$ passes through a point in $B$. If a finite blocking set exists, the pair $(x,y)$ is called secure in $M;$ if not, it is called insecure. We show that for $\sigma$ in a dense $G_{\delta}$ subset of $\Sigma_{r}$ with the $C^{r}$ topology, there exists a dense $G_{\delta}$ subset $\mathcal{\mathcal{R}=R}(\sigma)$ of $M(\sigma)\times M(\sigma)$ such that $(x,y)$ is insecure in $M(\sigma)$ for each $(x,y)\in\mathcal{R}$. In this sense, for the generic Birkhoff billiard, the generic pair of interior points is insecure. This is related to a theorem of S. Tabachnikov [24] that $(x,y)$ is insecure for all sufficiently close points $x$ and $y$ on a strictly convex arc on the boundary of a smooth table.
    Mathematics Subject Classification: Primary: 37J99, 37E99, 78A05; Secondary: 53C22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. Bangert and E. Gutkin, Insecurity for compact surfaces of positive genus, Geom. Dedicata, 146 (2010), 165-191.doi: 10.1007/s10711-009-9432-8.

    [2]

    R. Bishop, Circular billiard tables, conjugate loci, and a cardiod, Regul. Chaotic Dyn., 8 (2003), 83-95.doi: 10.1070/RD2003v008n01ABEH000227.

    [3]

    J. Bruce and P. Giblin, Curves and Singularities: A Geometrical Introduction to Singularity Theory, Cambridge University Press, Cambridge, 1984.

    [4]

    K. Burns and M. Gidea, Differential Geometry and Topology: With a View to Dynamical Systems, Chapman & Hall/CRC, Boca Raton, FL, 2005.

    [5]

    K. Burns and E. Gutkin, Growth of the number of geodesics between points and insecurity for Riemannian manifolds, Discrete Contin. Dyn. Syst., 21 (2008), 403-413.doi: 10.3934/dcds.2008.21.403.

    [6]

    M. Farber, Topology of Billiard Problems, I, Duke Math J., 115 (2002), 559-585.doi: 10.1215/S0012-7094-02-11535-X.

    [7]

    M. Farber, Topology of Billiard Problems, II, Duke Math J., 115 (2002), 587-621.doi: 10.1215/S0012-7094-02-11535-X.

    [8]

    M. Gerber and L. Liu, Real analytic metrics on $S^{2}$ with total absence of finite blocking, Geom. Dedicata, 166 (2013), 99-128.doi: 10.1007/s10711-012-9787-0.

    [9]

    M. Gerber and W.-K. Ku, A dense G-delta set of Riemannian metrics without the finite blocking property, Math. Res. Lett., 18 (2011), 389-404.doi: 10.4310/MRL.2011.v18.n3.a1.

    [10]

    E. Gutkin, Billiards on almost integrable polyhedral surfaces, Ergodic Theory Dynam. Sys., 4 (1984), 569-584.doi: 10.1017/S0143385700002650.

    [11]

    E. Gutkin, Blocking of billiard orbits and security for polygons and flat surfaces, Geom. Funct. Anal., 15 (2005), 83-105.doi: 10.1007/s00039-005-0502-2.

    [12]

    E. Gutkin, Billiard dynamics: An updated survey with the emphasis on open problems, Chaos, 22 (2012), 026116, 13pp.doi: 10.1063/1.4729307.

    [13]

    E. Gutkin, P. Hubert and T. Schmidt, Affine diffeomorphisms of translation surfaces: Periodic points, Fuchsian groups, and arithmeticity, Ann. Sci. École Norm. Sup. (4), 36 (2003), 847-866.doi: 10.1016/j.ansens.2003.05.001.

    [14]

    E. Gutkin and C. Judge, The geometry and arithmetic of translation surfaces with applications to polygonal billiards, Math. Res. Lett., 3 (1996), 391-403.doi: 10.4310/MRL.1996.v3.n3.a8.

    [15]

    E. Gutkin and C. Judge, Affine mappings of translation surfaces: Geometry and arithmetic, Duke Math. J., 103 (2000), 191-213.doi: 10.1215/S0012-7094-00-10321-3.

    [16]

    E. Gutkin and V. Schroeder, Connecting geodesics and security of configurations in compact locally symmetric spaces, Geom. Dedicata, 118 (2006), 185-208.doi: 10.1007/s10711-005-9036-x.

    [17]

    W. Ho, On blocking numbers of surfaces, preprint, arXiv:0807.2934v3 (2008).

    [18]

    A. Katok and B. Hasselblatt, Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511809187.

    [19]

    J.-F. Lafont and B. Schmidt, Blocking light in compact Riemannian manifolds, Geom. Topol., 11 (2007), 867-887.doi: 10.2140/gt.2007.11.867.

    [20]

    T. Monteil, A counter-example to the theorem of Hiemer and Snurnikov, J. Statist. Phys., 114 (2004), 1619-1623.doi: 10.1023/B:JOSS.0000013974.81162.20.

    [21]

    J. Oxtoby, Measure and Category, Second Edition, Springer-Verlag, New York-Berlin, 1980.

    [22]

    W. Rudin, Principles of Mathematical Analysis, Third Edition, McGraw Hill, New York-Auckland-D\"usseldorf, 1976.

    [23]

    S. Tabachnikov, Geometry and Billiards, American Mathematical Society, Providence, RI, 2005.doi: 10.1090/stml/030.

    [24]

    S. Tabachnikov, Birkhoff billiards are insecure, Discrete Contin. Dyn. Syst., 23 (2009), 1035-1040.doi: 10.3934/dcds.2009.23.1035.

    [25]

    W. Veech, Teichmüller curves in moduli space, Eisenstein series, and an application to triangular billiards, Invent. Math., 97 (1989), 553-583.doi: 10.1007/BF01388890.

    [26]

    W. Veech, The billiard in a regular polygon, Geom. Funct. Anal., 2 (1992), 341-379.doi: 10.1007/BF01896876.

    [27]

    Ya. Vorobets, On the measure of the set of periodic points of a billiard, Math. Notes, 55 (1994), 455-460.doi: 10.1007/BF02110371.

    [28]

    M. Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents, Comm. Math. Phys., 105 (1986), 391-414.doi: 10.1007/BF01205934.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(163) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return