\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces

Abstract Related Papers Cited by
  • We prove the unique solvability in weighted Sobolev spaces of non-divergence form elliptic and parabolic equations on a half space with the homogeneous Neumann boundary condition. All the leading coefficients are assumed to be only measurable in the time variable and have small mean oscillations in the spatial variables. Our results can be applied to Neumann boundary value problems for stochastic partial differential equations with BMO$_x$ coefficients.
    Mathematics Subject Classification: Primary: 35J25, 35K20; Secondary: 35R05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    H. Aimar and R. A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc., 91 (1984), 213-216.

    [2]

    F. Chiarenza, M. Frasca and P. Longo, Interior $W^{2,p}$ estimates for nondivergence elliptic equations with discontinuous coefficients, Ricerche Mat., 40 (1991), 149-168.

    [3]

    F. Chiarenza, M. Frasca and P. Longo, $W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients, Trans. Amer. Math. Soc., 336 (1993), 841-853.doi: 10.2307/2154379.

    [4]

    G. Di Fazio and D. K. Palagachev, Oblique derivative problem for elliptic equations in non-divergence form with VMO coefficients, Comment. Math. Univ. Carolin., 37 (1996), 537-556.

    [5]

    H. Dong, Parabolic equations with variably partially VMO coefficients, Algebra i Analiz, 23 (2011), 150-174.doi: 10.1090/S1061-0022-2012-01206-9.

    [6]

    H. Dong, Solvability of parabolic equations in divergence form with partially BMO coefficients, J. Funct. Anal., 258 (2010), 2145-2172.doi: 10.1016/j.jfa.2010.01.003.

    [7]

    H. Dong and D. Kim, $L_p$ solvability of divergence type parabolic and elliptic systems with partially BMO coefficients, Calc. Var. Partial Differential Equations, 40 (2011), 357-389.doi: 10.1007/s00526-010-0344-0.

    [8]

    H. Dong and D. Kim, On the $L_p$-solvability of higher order parabolic and elliptic systems with BMO coefficients, Arch. Ration. Mech. Anal., 199 (2011), 889-941.doi: 10.1007/s00205-010-0345-3.

    [9]

    H. Dong and D. Kim, Elliptic and parabolic equations with measurable coefficients in weighted Sobolev spaces, Adv. Math., 274 (2015), 681-735.doi: 10.1016/j.aim.2014.12.037.

    [10]

    H. Dong and H. Zhang, Conormal problem of higher-order parabolic systems, Trans. Amer. Math. Soc., 368 (2016), 7413-7460.doi: 10.1090/tran/6605.

    [11]

    D. Kim, Parabolic equations with measurable coefficients. II, J. Math. Anal. Appl., 334 (2007), 534-548.doi: 10.1016/j.jmaa.2006.12.077.

    [12]

    I. Kim, K.-H. Kim and K. Lee, A weighted $L_p$-theory for divergence type parabolic PDEs with BMO coefficients on $C^1$-domains, J. Math. Anal. Appl., 412 (2014), 589-612.doi: 10.1016/j.jmaa.2013.10.079.

    [13]

    K.-H. Kim, A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains, J. Theoret. Probab., 27 (2014), 107-136.doi: 10.1007/s10959-012-0459-7.

    [14]

    K.-H. Kim and N. V. Krylov, On the Sobolev space theory of parabolic and elliptic equations in $C^1$ domains, SIAM J. Math. Anal., 36 (2004), 618-642.doi: 10.1137/S0036141003421145.

    [15]

    K.-H. Kim and K. Lee, A weighted $L_p$-theory for parabolic PDEs with BMO coefficients on $C^1$-domains, J. Differential Equations, 254 (2013), 368-407.doi: 10.1016/j.jde.2012.08.002.

    [16]

    V. Kozlov and A. Nazarov, Oblique derivative problem for non-divergence parabolic equations with time-discontinuous coefficients, In Proceedings of the St. Petersburg Mathematical Society. Vol. XV. Advances in mathematical analysis of partial differential equations, volume 232 of Amer. Math. Soc. Transl. Ser. 2, 177-191. Amer. Math. Soc., Providence, RI, 2014.

    [17]

    V. Kozlov and A. Nazarov, The Dirichlet problem for non-divergence parabolic equations with discontinuous in time coefficients, Math. Nachr., 282 (2009), 1220-1241.doi: 10.1002/mana.200910796.

    [18]

    N. V. Krylov, A $W^n_2$-theory of the Dirichlet problem for SPDEs in general smooth domains, Probab. Theory Related Fields, 98 (1994), 389-421.doi: 10.1007/BF01192260.

    [19]

    N. V. Krylov, Weighted Sobolev spaces and Laplace's equation and the heat equations in a half space, Comm. Partial Differential Equations, 24 (1999), 1611-1653.doi: 10.1080/03605309908821478.

    [20]

    N. V. Krylov, Parabolic and elliptic equations with VMO coefficients, Comm. Partial Differential Equations, 32 (2007), 453-475.doi: 10.1080/03605300600781626.

    [21]

    N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, volume 96 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2008.doi: 10.1090/gsm/096.

    [22]

    N. V. Krylov, On divergence form {SPDE}s with VMO coefficients in a half space, Stochastic Process. Appl., 119 (2009), 2095-2117.doi: 10.1016/j.spa.2008.11.003.

    [23]

    N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients in a half space, SIAM J. Math. Anal., 31 (1999), 19-33.doi: 10.1137/S0036141098338843.

    [24]

    N. V. Krylov and S. V. Lototsky, A Sobolev space theory of SPDEs with constant coefficients on a half line, SIAM J. Math. Anal., 30 (1999), 298-325.doi: 10.1137/S0036141097326908.

    [25]

    N. V. Krylov, Parabolic equations with VMO coefficients in sobolev spaces with mixed norms, J. Funct. Anal., 250 (2007), 521-558.doi: 10.1016/j.jfa.2007.04.003.

    [26]

    A. Kufner, Weighted Sobolev Spaces, A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1985. Translated from the Czech.

    [27]

    N. Nadirashvili, Nonuniqueness in the martingale problem and the Dirichlet problem for uniformly elliptic operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 537-549.

    [28]

    N. N. Ural'ceva, The impossibility of $W_q{}^{2}$ estimates for multidimensional elliptic equations with discontinuous coefficients, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 5 (1967), 250-254.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(192) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return