• Previous Article
    Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach
  • DCDS Home
  • This Issue
  • Next Article
    Neumann problem for non-divergence elliptic and parabolic equations with BMO$_x$ coefficients in weighted Sobolev spaces
September  2016, 36(9): 4915-4923. doi: 10.3934/dcds.2016012

Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Mathematics, Nanjing University, Nanjing 210093

3. 

Department of Mathematics, Hokkaido University, Sapporo, 060-0810

Received  June 2015 Revised  March 2016 Published  May 2016

In this paper we establish some regularity criteria for the three-dimensional Boussinesq system with the temperature-dependent viscosity and thermal diffusivity in a bounded domain.
Citation: Jishan Fan, Fucai Li, Gen Nakamura. Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4915-4923. doi: 10.3934/dcds.2016012
References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003). Google Scholar

[2]

H. Abidi, Sur l'unicité pour le système de Boussinesq avec diffusion non linéaire,, J. Math. Pures Appl., 91 (2009), 80. doi: 10.1016/j.matpur.2008.09.004. Google Scholar

[3]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008. Google Scholar

[4]

D. Adhikari, C. Cao and J. Wu, The 2D Boussinesq equations with vertical viscosity and vertical diffusivity,, J. Differential Equations, 249 (2010), 1078. doi: 10.1016/j.jde.2010.03.021. Google Scholar

[5]

D. Adhikari, C. Cao and J. Wu, Global regularity results for the 2D Boussinesq equations with vertical dissipation,, J. Differential Equations, 251 (2011), 1637. doi: 10.1016/j.jde.2011.05.027. Google Scholar

[6]

H. Amann, Linear and Quasilinear Parabolic Problems,, vol. I, (1995). doi: 10.1007/978-3-0348-9221-6. Google Scholar

[7]

H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions, An $L^p$ theory,, J. Math. Fluid Mech., 12 (2010), 397. doi: 10.1007/s00021-009-0295-4. Google Scholar

[8]

L. Brandolese and M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system,, Trans. Amer. Math. Soc., 364 (2012), 5057. doi: 10.1090/S0002-9947-2012-05432-8. Google Scholar

[9]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[10]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935. doi: 10.1017/S0308210500026810. Google Scholar

[11]

D. Chae and J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities,, Adv. Math., 230 (2012), 1618. doi: 10.1016/j.aim.2012.04.004. Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1. doi: 10.1007/s00220-009-0821-5. Google Scholar

[13]

R. Danchin and M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two,, Math. Models Methods Appl. Sci., 21 (2011), 421. doi: 10.1142/S0218202511005106. Google Scholar

[14]

J. I. Diaz and G. Galliano, On the Boussinesq system with nonlinear thermal diffusion,, Nonlinear Anal., 30 (1997), 3255. doi: 10.1016/S0362-546X(97)00330-1. Google Scholar

[15]

J. I. Diaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59. Google Scholar

[16]

P. G. Drazin and W. H. Reid, Hydrodynamic Stability,, Cambridge University Press, (1981). Google Scholar

[17]

J.-S. Fan, F.-C. Li and G.Nakamura, Regularity criteria and uniform estimates for the Boussinesq system with the temperature-dependent viscosity and thermal diffusivity,, J. Math. Phys., 55 (2014). doi: 10.1063/1.4878495. Google Scholar

[18]

J. Fan, G. Nakamura and H. Wang, Blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain,, Nonlinear Anal., 75 (2012), 3436. doi: 10.1016/j.na.2012.01.008. Google Scholar

[19]

J.-S. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, Nonlinearity, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[20]

T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity,, Indiana Univ. Math. J., 58 (2009), 1591. doi: 10.1512/iumj.2009.58.3590. Google Scholar

[21]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation,, Comm. Partial Differential Equations, 36 (2011), 420. doi: 10.1080/03605302.2010.518657. Google Scholar

[22]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation,, J. Differential Equations, 249 (2010), 2147. doi: 10.1016/j.jde.2010.07.008. Google Scholar

[23]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012. Google Scholar

[24]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1. doi: 10.3934/dcds.2005.12.1. Google Scholar

[25]

M.-J. Lai, R. Pan, K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, Arch. Ration. Mech. Anal., 199 (2011), 739. doi: 10.1007/s00205-010-0357-z. Google Scholar

[26]

H. Li, R. Pan and W. Zhang, Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion,, J. Hyperbolic Differ. Equ., 12 (2015), 469. doi: 10.1142/S0219891615500137. Google Scholar

[27]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model,, Nonlinear Anal., 36 (1999), 457. doi: 10.1016/S0362-546X(97)00635-4. Google Scholar

[28]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model: regularity and global existence of strong solutions,, Mat. Contemp., 11 (1996), 71. Google Scholar

[29]

A. Lunardi, Interpolation Theory,, 2nd ed., (2009). Google Scholar

[30]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

[31]

J. M. Milhaljan, A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid,, Astron. J., 136 (1962), 1126. doi: 10.1086/147463. Google Scholar

[32]

J. Pedlosky, Geophysical Fluid Dyanmics,, Springer-Verlag, (1987). Google Scholar

[33]

Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity,, J. Differential Equations, 255 (2013), 1069. doi: 10.1016/j.jde.2013.04.032. Google Scholar

[34]

C. Wang and Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity,, Adv. Math., 228 (2011), 43. doi: 10.1016/j.aim.2011.05.008. Google Scholar

show all references

References:
[1]

R. A. Adams and J. F. Fournier, Sobolev Spaces,, 2nd ed., (2003). Google Scholar

[2]

H. Abidi, Sur l'unicité pour le système de Boussinesq avec diffusion non linéaire,, J. Math. Pures Appl., 91 (2009), 80. doi: 10.1016/j.matpur.2008.09.004. Google Scholar

[3]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008. Google Scholar

[4]

D. Adhikari, C. Cao and J. Wu, The 2D Boussinesq equations with vertical viscosity and vertical diffusivity,, J. Differential Equations, 249 (2010), 1078. doi: 10.1016/j.jde.2010.03.021. Google Scholar

[5]

D. Adhikari, C. Cao and J. Wu, Global regularity results for the 2D Boussinesq equations with vertical dissipation,, J. Differential Equations, 251 (2011), 1637. doi: 10.1016/j.jde.2011.05.027. Google Scholar

[6]

H. Amann, Linear and Quasilinear Parabolic Problems,, vol. I, (1995). doi: 10.1007/978-3-0348-9221-6. Google Scholar

[7]

H. Beirão da Veiga and F. Crispo, Sharp inviscid limit results under Navier type boundary conditions, An $L^p$ theory,, J. Math. Fluid Mech., 12 (2010), 397. doi: 10.1007/s00021-009-0295-4. Google Scholar

[8]

L. Brandolese and M. E. Schonbek, Large time decay and growth for solutions of a viscous Boussinesq system,, Trans. Amer. Math. Soc., 364 (2012), 5057. doi: 10.1090/S0002-9947-2012-05432-8. Google Scholar

[9]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001. Google Scholar

[10]

D. Chae and H.-S. Nam, Local existence and blow-up criterion for the Boussinesq equations,, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935. doi: 10.1017/S0308210500026810. Google Scholar

[11]

D. Chae and J. Wu, The 2D Boussinesq equations with logarithmically supercritical velocities,, Adv. Math., 230 (2012), 1618. doi: 10.1016/j.aim.2012.04.004. Google Scholar

[12]

R. Danchin and M. Paicu, Global well-posedness issues for the inviscid Boussinesq system with Yudovich's type data,, Comm. Math. Phys., 290 (2009), 1. doi: 10.1007/s00220-009-0821-5. Google Scholar

[13]

R. Danchin and M. Paicu, Global existence results for the anisotropic Boussinesq system in dimension two,, Math. Models Methods Appl. Sci., 21 (2011), 421. doi: 10.1142/S0218202511005106. Google Scholar

[14]

J. I. Diaz and G. Galliano, On the Boussinesq system with nonlinear thermal diffusion,, Nonlinear Anal., 30 (1997), 3255. doi: 10.1016/S0362-546X(97)00330-1. Google Scholar

[15]

J. I. Diaz and G. Galiano, Existence and uniqueness of solutions of the Boussinesq system with nonlinear thermal diffusion,, Topol. Methods Nonlinear Anal., 11 (1998), 59. Google Scholar

[16]

P. G. Drazin and W. H. Reid, Hydrodynamic Stability,, Cambridge University Press, (1981). Google Scholar

[17]

J.-S. Fan, F.-C. Li and G.Nakamura, Regularity criteria and uniform estimates for the Boussinesq system with the temperature-dependent viscosity and thermal diffusivity,, J. Math. Phys., 55 (2014). doi: 10.1063/1.4878495. Google Scholar

[18]

J. Fan, G. Nakamura and H. Wang, Blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain,, Nonlinear Anal., 75 (2012), 3436. doi: 10.1016/j.na.2012.01.008. Google Scholar

[19]

J.-S. Fan and T. Ozawa, Regularity criteria for the 3D density-dependent Boussinesq equations,, Nonlinearity, 22 (2009), 553. doi: 10.1088/0951-7715/22/3/003. Google Scholar

[20]

T. Hmidi and S. Keraani, On the global well-posedness of the Boussinesq system with zero viscosity,, Indiana Univ. Math. J., 58 (2009), 1591. doi: 10.1512/iumj.2009.58.3590. Google Scholar

[21]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Euler-Boussinesq system with critical dissipation,, Comm. Partial Differential Equations, 36 (2011), 420. doi: 10.1080/03605302.2010.518657. Google Scholar

[22]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation,, J. Differential Equations, 249 (2010), 2147. doi: 10.1016/j.jde.2010.07.008. Google Scholar

[23]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012. Google Scholar

[24]

T. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Contin. Dyn. Syst., 12 (2005), 1. doi: 10.3934/dcds.2005.12.1. Google Scholar

[25]

M.-J. Lai, R. Pan, K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, Arch. Ration. Mech. Anal., 199 (2011), 739. doi: 10.1007/s00205-010-0357-z. Google Scholar

[26]

H. Li, R. Pan and W. Zhang, Initial boundary value problem for 2D Boussinesq equations with temperature-dependent diffusion,, J. Hyperbolic Differ. Equ., 12 (2015), 469. doi: 10.1142/S0219891615500137. Google Scholar

[27]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model,, Nonlinear Anal., 36 (1999), 457. doi: 10.1016/S0362-546X(97)00635-4. Google Scholar

[28]

S. A. Lorca and J. L. Boldrini, The initial value problem for a generalized Boussinesq model: regularity and global existence of strong solutions,, Mat. Contemp., 11 (1996), 71. Google Scholar

[29]

A. Lunardi, Interpolation Theory,, 2nd ed., (2009). Google Scholar

[30]

A. J. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

[31]

J. M. Milhaljan, A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid,, Astron. J., 136 (1962), 1126. doi: 10.1086/147463. Google Scholar

[32]

J. Pedlosky, Geophysical Fluid Dyanmics,, Springer-Verlag, (1987). Google Scholar

[33]

Y. Sun and Z. Zhang, Global regularity for the initial-boundary value problem of the 2-D Boussinesq system with variable viscosity and thermal diffusivity,, J. Differential Equations, 255 (2013), 1069. doi: 10.1016/j.jde.2013.04.032. Google Scholar

[34]

C. Wang and Z. Zhang, Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity,, Adv. Math., 228 (2011), 43. doi: 10.1016/j.aim.2011.05.008. Google Scholar

[1]

P. D. Howell, J. J. Wylie, Huaxiong Huang, Robert M. Miura. Stretching of heated threads with temperature-dependent viscosity: Asymptotic analysis. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 553-572. doi: 10.3934/dcdsb.2007.7.553

[2]

Adriana C. Briozzo, María F. Natale, Domingo A. Tarzia. The Stefan problem with temperature-dependent thermal conductivity and a convective term with a convective condition at the fixed face. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1209-1220. doi: 10.3934/cpaa.2010.9.1209

[3]

Tao Wang. One dimensional $p$-th power Newtonian fluid with temperature-dependent thermal conductivity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 477-494. doi: 10.3934/cpaa.2016.15.477

[4]

Nurul Hafizah Zainal Abidin, Nor Fadzillah Mohd Mokhtar, Zanariah Abdul Majid. Onset of Benard-Marangoni instabilities in a double diffusive binary fluid layer with temperature-dependent viscosity. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019040

[5]

Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395

[6]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[7]

Hammadi Abidi, Taoufik Hmidi, Sahbi Keraani. On the global regularity of axisymmetric Navier-Stokes-Boussinesq system. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 737-756. doi: 10.3934/dcds.2011.29.737

[8]

Zilai Li, Zhenhua Guo. On free boundary problem for compressible navier-stokes equations with temperature-dependent heat conductivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3903-3919. doi: 10.3934/dcdsb.2017201

[9]

Saoussen Sokrani. On the global well-posedness of 3-D Boussinesq system with partial viscosity and axisymmetric data. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1613-1650. doi: 10.3934/dcds.2019072

[10]

Mei Wang, Zilai Li, Zhenhua Guo. Global weak solution to 3D compressible flows with density-dependent viscosity and free boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 1-24. doi: 10.3934/cpaa.2017001

[11]

Guangwu Wang, Boling Guo. Global weak solution to the quantum Navier-Stokes-Landau-Lifshitz equations with density-dependent viscosity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6141-6166. doi: 10.3934/dcdsb.2019133

[12]

Zhengguang Guo, Sadek Gala. Regularity criterion of the Newton-Boussinesq equations in $R^3$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 443-451. doi: 10.3934/cpaa.2012.11.443

[13]

Jishan Fan, Fucai Li, Gen Nakamura. Global strong solution to the two-dimensional density-dependent magnetohydrodynamic equations with vaccum. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1481-1490. doi: 10.3934/cpaa.2014.13.1481

[14]

Kazuo Yamazaki. Global regularity of the two-dimensional magneto-micropolar fluid system with zero angular viscosity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2193-2207. doi: 10.3934/dcds.2015.35.2193

[15]

Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575

[16]

Dominique Blanchard, Nicolas Bruyère, Olivier Guibé. Existence and uniqueness of the solution of a Boussinesq system with nonlinear dissipation. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2213-2227. doi: 10.3934/cpaa.2013.12.2213

[17]

Shuji Yoshikawa, Irena Pawłow, Wojciech M. Zajączkowski. A quasilinear thermoviscoelastic system for shape memory alloys with temperature dependent specific heat. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1093-1115. doi: 10.3934/cpaa.2009.8.1093

[18]

Xiaojing Xu, Zhuan Ye. Note on global regularity of 3D generalized magnetohydrodynamic-$\alpha$ model with zero diffusivity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 585-595. doi: 10.3934/cpaa.2015.14.585

[19]

Asim Aziz, Wasim Jamshed. Unsteady MHD slip flow of non Newtonian power-law nanofluid over a moving surface with temperature dependent thermal conductivity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 617-630. doi: 10.3934/dcdss.2018036

[20]

Liuyang Yuan, Zhongping Wan, Qiuhua Tang. A criterion for an approximation global optimal solution based on the filled functions. Journal of Industrial & Management Optimization, 2016, 12 (1) : 375-387. doi: 10.3934/jimo.2016.12.375

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]