-
Previous Article
Existence and uniqueness of solutions for a model of non-sarcomeric actomyosin bundles
- DCDS Home
- This Issue
-
Next Article
Regularity criteria for the Boussinesq system with temperature-dependent viscosity and thermal diffusivity in a bounded domain
Multiple periodic solutions of delay differential systems with $2k-1$ lags via variational approach
1. | School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China |
2. | Department of Foundation Courses, Beijing Union University, Beijing 100101, China |
References:
[1] |
L. Fannio, Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity, Discrete and Cont. Dynamicals Sys., 3 (1997), 251-264.
doi: 10.3934/dcds.1997.3.251. |
[2] |
G. Fei, Multiple periodic solutins of differential delay equations via Hamiltonian systems(I), Nonlinear Anal., 65 (2006), 25-39.
doi: 10.1016/j.na.2005.06.011. |
[3] |
G. Fei, Multiple periodic solutins of differential delay equations via Hamiltonian systems(II), Nonlinear Anal., 65 (2006), 40-58.
doi: 10.1016/j.na.2005.06.012. |
[4] |
W. Ge, On the existence of periodic solutions of the differential delay equations with multiple lags, Acta Appl. Math. Sinica(in Chinese), 17 (1994), 173-181. |
[5] |
W. Ge, Oscillatory periodic solutions of differential delay equations with multiple lags, Chinese Sci. Bull., 42 (1997), 444-447.
doi: 10.1007/BF02882587. |
[6] |
W. Ge, Periodic solutions of the differential delay equation $x'(t) = -f(x(t-1))$, Acta Math. Sinica(New Series), 12 (1996), 113-121.
doi: 10.1007/BF02108151. |
[7] |
W. Ge, Two existence theorems of periodic solutions for differential delay equations, Chinese Ann. Math., 15 (1994), 217-224. |
[8] |
Z. Guo and J. Yu, Multiple results for periodic solutions to delay differential equations via critical point theory, J. Differential Equations, 218 (2005), 15-35.
doi: 10.1016/j.jde.2005.08.007. |
[9] |
Z. Guo and J. Yu, Multiple results on periodic solutions to higher dimensional differential equations with multiple delays, J. Dynam. Differential Equations, 23 (2011), 1029-1052.
doi: 10.1007/s10884-011-9228-z. |
[10] |
J. Kaplan and J. Yorke, Ordinary differential equations which yield periodic solution of delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[11] |
J. Li and X. He, Multiple periodic solutions of differential delay equations created by asymptotically linear Hailtonian systems, Nonlinear Anal., 31 (1998), 45-54.
doi: 10.1016/S0362-546X(96)00058-2. |
[12] |
J. Li and X. He, Proof and gengeralization of Kaplan-Yorke' conjecture under the condition $f'(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A, 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[13] |
J. Li, X. He and Z. Liu, Hamiltonian symmetric group and multiple periodic solutions of differential delay equations, Nonlinear Analysis, TMA, 35 (1999), 457-474.
doi: 10.1016/S0362-546X(97)00623-8. |
[14] |
S. Li and J. Liu, Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[15] |
J. Mawhen and M. Willem, Critical Point Theory and Hamiltonian System, Springer-Verlag, New Yorke, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[16] |
R. D. Nussbaum, Periodic solutions of special differential delay equations: An example in nonlinear functional analysis, Proc. Loyal Soc. Edingburgh, 81 (1978), 131-151.
doi: 10.1017/S0308210500010490. |
show all references
References:
[1] |
L. Fannio, Multiple periodic solutions of Hamiltonian systems with strong resonance at infinity, Discrete and Cont. Dynamicals Sys., 3 (1997), 251-264.
doi: 10.3934/dcds.1997.3.251. |
[2] |
G. Fei, Multiple periodic solutins of differential delay equations via Hamiltonian systems(I), Nonlinear Anal., 65 (2006), 25-39.
doi: 10.1016/j.na.2005.06.011. |
[3] |
G. Fei, Multiple periodic solutins of differential delay equations via Hamiltonian systems(II), Nonlinear Anal., 65 (2006), 40-58.
doi: 10.1016/j.na.2005.06.012. |
[4] |
W. Ge, On the existence of periodic solutions of the differential delay equations with multiple lags, Acta Appl. Math. Sinica(in Chinese), 17 (1994), 173-181. |
[5] |
W. Ge, Oscillatory periodic solutions of differential delay equations with multiple lags, Chinese Sci. Bull., 42 (1997), 444-447.
doi: 10.1007/BF02882587. |
[6] |
W. Ge, Periodic solutions of the differential delay equation $x'(t) = -f(x(t-1))$, Acta Math. Sinica(New Series), 12 (1996), 113-121.
doi: 10.1007/BF02108151. |
[7] |
W. Ge, Two existence theorems of periodic solutions for differential delay equations, Chinese Ann. Math., 15 (1994), 217-224. |
[8] |
Z. Guo and J. Yu, Multiple results for periodic solutions to delay differential equations via critical point theory, J. Differential Equations, 218 (2005), 15-35.
doi: 10.1016/j.jde.2005.08.007. |
[9] |
Z. Guo and J. Yu, Multiple results on periodic solutions to higher dimensional differential equations with multiple delays, J. Dynam. Differential Equations, 23 (2011), 1029-1052.
doi: 10.1007/s10884-011-9228-z. |
[10] |
J. Kaplan and J. Yorke, Ordinary differential equations which yield periodic solution of delay equations, J. Math. Anal. Appl., 48 (1974), 317-324.
doi: 10.1016/0022-247X(74)90162-0. |
[11] |
J. Li and X. He, Multiple periodic solutions of differential delay equations created by asymptotically linear Hailtonian systems, Nonlinear Anal., 31 (1998), 45-54.
doi: 10.1016/S0362-546X(96)00058-2. |
[12] |
J. Li and X. He, Proof and gengeralization of Kaplan-Yorke' conjecture under the condition $f'(0)>0$ on periodic solution of differential delay equations, Sci. China Ser. A, 42 (1999), 957-964.
doi: 10.1007/BF02880387. |
[13] |
J. Li, X. He and Z. Liu, Hamiltonian symmetric group and multiple periodic solutions of differential delay equations, Nonlinear Analysis, TMA, 35 (1999), 457-474.
doi: 10.1016/S0362-546X(97)00623-8. |
[14] |
S. Li and J. Liu, Morse theory and asymptotically linear Hamiltonian systems, J. Differential Equations, 78 (1989), 53-73.
doi: 10.1016/0022-0396(89)90075-2. |
[15] |
J. Mawhen and M. Willem, Critical Point Theory and Hamiltonian System, Springer-Verlag, New Yorke, 1989.
doi: 10.1007/978-1-4757-2061-7. |
[16] |
R. D. Nussbaum, Periodic solutions of special differential delay equations: An example in nonlinear functional analysis, Proc. Loyal Soc. Edingburgh, 81 (1978), 131-151.
doi: 10.1017/S0308210500010490. |
[1] |
Nguyen Thi Van Anh. On periodic solutions to a class of delay differential variational inequalities. Evolution Equations and Control Theory, 2022, 11 (4) : 1309-1329. doi: 10.3934/eect.2021045 |
[2] |
Xiao Wang, Zhaohui Yang, Xiongwei Liu. Periodic and almost periodic oscillations in a delay differential equation system with time-varying coefficients. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6123-6138. doi: 10.3934/dcds.2017263 |
[3] |
Mohameden Ahmedou, Mohamed Ben Ayed, Marcello Lucia. On a resonant mean field type equation: A "critical point at Infinity" approach. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 1789-1818. doi: 10.3934/dcds.2017075 |
[4] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[5] |
Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443 |
[6] |
Ningning Ye, Zengyun Hu, Zhidong Teng. Periodic solution and extinction in a periodic chemostat model with delay in microorganism growth. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1361-1384. doi: 10.3934/cpaa.2022022 |
[7] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[8] |
Nicola Guglielmi, Christian Lubich. Numerical periodic orbits of neutral delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 1057-1067. doi: 10.3934/dcds.2005.13.1057 |
[9] |
P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220 |
[10] |
Pavel Drábek, Martina Langerová. Impulsive control of conservative periodic equations and systems: Variational approach. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3789-3802. doi: 10.3934/dcds.2018164 |
[11] |
Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009 |
[12] |
José Ángel Cid, Luís Sanchez. Nonnegative oscillations for a class of differential equations without uniqueness: A variational approach. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 545-554. doi: 10.3934/dcdsb.2019253 |
[13] |
Xianhua Huang. Almost periodic and periodic solutions of certain dissipative delay differential equations. Conference Publications, 1998, 1998 (Special) : 301-313. doi: 10.3934/proc.1998.1998.301 |
[14] |
Abd-semii Oluwatosin-Enitan Owolabi, Timilehin Opeyemi Alakoya, Adeolu Taiwo, Oluwatosin Temitope Mewomo. A new inertial-projection algorithm for approximating common solution of variational inequality and fixed point problems of multivalued mappings. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 255-278. doi: 10.3934/naco.2021004 |
[15] |
Eugenii Shustin. Exponential decay of oscillations in a multidimensional delay differential system. Conference Publications, 2003, 2003 (Special) : 809-816. doi: 10.3934/proc.2003.2003.809 |
[16] |
Songbai Guo, Jing-An Cui, Wanbiao Ma. An analysis approach to permanence of a delay differential equations model of microorganism flocculation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3831-3844. doi: 10.3934/dcdsb.2021208 |
[17] |
Arnaud Münch. A variational approach to approximate controls for system with essential spectrum: Application to membranal arch. Evolution Equations and Control Theory, 2013, 2 (1) : 119-151. doi: 10.3934/eect.2013.2.119 |
[18] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4737-4765. doi: 10.3934/dcds.2021055 |
[19] |
Changrong Zhu, Bin Long. The periodic solutions bifurcated from a homoclinic solution for parabolic differential equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3793-3808. doi: 10.3934/dcdsb.2016121 |
[20] |
Hongyong Zhao, Daiyong Wu. Point to point traveling wave and periodic traveling wave induced by Hopf bifurcation for a diffusive predator-prey system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3271-3284. doi: 10.3934/dcdss.2020129 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]