September  2016, 36(9): 4963-4996. doi: 10.3934/dcds.2016015

Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data

1. 

CERMICS, École des Ponts, UPE, Inria, Champs-sur-Marne, France

2. 

CERMICS, École des Ponts, UPE, Champs-sur-Marne, France

Received  July 2015 Revised  January 2016 Published  May 2016

Brenier and Grenier [SIAM J. Numer. Anal., 1998] proved that sticky particle dynamics with a large number of particles allow to approximate the entropy solution to scalar one-dimensional conservation laws with monotonic initial data. In [arXiv:1501.01498], we introduced a multitype version of this dynamics and proved that the associated empirical cumulative distribution functions converge to the viscosity solution, in the sense of Bianchini and Bressan [Ann. of Math. (2), 2005], of one-dimensional diagonal hyperbolic systems with monotonic initial data of arbitrary finite variation. In the present paper, we analyse the $L^1$ error of this approximation procedure, by splitting it into the discretisation error of the initial data and the non-entropicity error induced by the evolution of the particle system. We prove that the error at time $t$ is bounded from above by a term of order $(1+t)/n$, where $n$ denotes the number of particles, and give an example showing that this rate is optimal. We last analyse the additional error introduced when replacing the multitype sticky particle dynamics by an iterative scheme based on the typewise sticky particle dynamics, and illustrate the convergence of this scheme by numerical simulations.
Citation: Benjamin Jourdain, Julien Reygner. Optimal convergence rate of the multitype sticky particle approximation of one-dimensional diagonal hyperbolic systems with monotonic initial data. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4963-4996. doi: 10.3934/dcds.2016015
References:
[1]

A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Inform. Process. Lett., 9 (1979), 216-219. doi: 10.1016/0020-0190(79)90072-3.

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2), 161 (2005), 223-342. doi: 10.4007/annals.2005.161.223.

[3]

S. Bobkov and M. Ledoux, One dimensional empirical measures, order statistics, and Kantorovich transport distances,, preprint, (). 

[4]

F. Bouchut, On Zero Pressure Gas Dynamics, in Series on Advances in Mathematics for Applied Sciences, World Scientific, 22 (1994), 171-190.

[5]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Equations, 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[6]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.

[7]

A. Bressan and T. Nguyen, Non-existence and non-uniqueness for multidimensional sticky particle systems, Kinet. Relat. Models, 7 (2014), 205-218. doi: 10.3934/krm.2014.7.205.

[8]

W. E, Y. G. Rykov and Y. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.

[9]

M. T. Goodrich, Finding the convex hull of a sorted point set in parallel, Inform. Process. Lett., 26 (1987), 173-179. doi: 10.1016/0020-0190(87)90002-0.

[10]

R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Inform. Process. Lett., 1 (1972), 132-133.

[11]

E. Grenier, Existence globale pour le système des gaz sans pression, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 171-174.

[12]

B. Jourdain, Signed sticky particles and 1D scalar conservation laws, C. R. Math. Acad. Sci. Paris, 334 (2002), 233-238. doi: 10.1016/S1631-073X(02)02251-3.

[13]

B. Jourdain and J. Reygner, A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data,, preprint, (). 

[14]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[15]

D. Serre, Systems of Conservation Laws I, Cambridge University Press, Cambridge, 1999. Translated from the 1996 French original by I. N. Sneddon. doi: 10.1017/CBO9780511612374.

[16]

M. Vergassola, B. Dubrulle, U. Frisch and A. Noullez, Burgers' equation, devil's staircases and the mass distribution for large-scale structures, Astron. Astroph., 289 (1994), 325-356.

[17]

C. Villani, Optimal Transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[18]

Y. B. Zel'dovitch, Gravitational instability: An approximate theory for large density perturbations, Astron. Astroph., 5 (1970), 84-89.

show all references

References:
[1]

A. M. Andrew, Another efficient algorithm for convex hulls in two dimensions, Inform. Process. Lett., 9 (1979), 216-219. doi: 10.1016/0020-0190(79)90072-3.

[2]

S. Bianchini and A. Bressan, Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. of Math. (2), 161 (2005), 223-342. doi: 10.4007/annals.2005.161.223.

[3]

S. Bobkov and M. Ledoux, One dimensional empirical measures, order statistics, and Kantorovich transport distances,, preprint, (). 

[4]

F. Bouchut, On Zero Pressure Gas Dynamics, in Series on Advances in Mathematics for Applied Sciences, World Scientific, 22 (1994), 171-190.

[5]

F. Bouchut and F. James, Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness, Comm. Partial Differential Equations, 24 (1999), 2173-2189. doi: 10.1080/03605309908821498.

[6]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328. doi: 10.1137/S0036142997317353.

[7]

A. Bressan and T. Nguyen, Non-existence and non-uniqueness for multidimensional sticky particle systems, Kinet. Relat. Models, 7 (2014), 205-218. doi: 10.3934/krm.2014.7.205.

[8]

W. E, Y. G. Rykov and Y. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. doi: 10.1007/BF02101897.

[9]

M. T. Goodrich, Finding the convex hull of a sorted point set in parallel, Inform. Process. Lett., 26 (1987), 173-179. doi: 10.1016/0020-0190(87)90002-0.

[10]

R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Inform. Process. Lett., 1 (1972), 132-133.

[11]

E. Grenier, Existence globale pour le système des gaz sans pression, C. R. Acad. Sci. Paris Sér. I Math., 321 (1995), 171-174.

[12]

B. Jourdain, Signed sticky particles and 1D scalar conservation laws, C. R. Math. Acad. Sci. Paris, 334 (2002), 233-238. doi: 10.1016/S1631-073X(02)02251-3.

[13]

B. Jourdain and J. Reygner, A multitype sticky particle construction of Wasserstein stable semigroups solving one-dimensional diagonal hyperbolic systems with large monotonic data,, preprint, (). 

[14]

R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts Appl. Math., Cambridge University Press, Cambridge, 2002. doi: 10.1017/CBO9780511791253.

[15]

D. Serre, Systems of Conservation Laws I, Cambridge University Press, Cambridge, 1999. Translated from the 1996 French original by I. N. Sneddon. doi: 10.1017/CBO9780511612374.

[16]

M. Vergassola, B. Dubrulle, U. Frisch and A. Noullez, Burgers' equation, devil's staircases and the mass distribution for large-scale structures, Astron. Astroph., 289 (1994), 325-356.

[17]

C. Villani, Optimal Transport, volume 338 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-540-71050-9.

[18]

Y. B. Zel'dovitch, Gravitational instability: An approximate theory for large density perturbations, Astron. Astroph., 5 (1970), 84-89.

[1]

Alberto Bressan, Truyen Nguyen. Non-existence and non-uniqueness for multidimensional sticky particle systems. Kinetic and Related Models, 2014, 7 (2) : 205-218. doi: 10.3934/krm.2014.7.205

[2]

Tohru Nakamura, Shinya Nishibata, Naoto Usami. Convergence rate of solutions towards the stationary solutions to symmetric hyperbolic-parabolic systems in half space. Kinetic and Related Models, 2018, 11 (4) : 757-793. doi: 10.3934/krm.2018031

[3]

Shahad Al-azzawi, Jicheng Liu, Xianming Liu. Convergence rate of synchronization of systems with additive noise. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 227-245. doi: 10.3934/dcdsb.2017012

[4]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure and Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[5]

Nicolas Forcadel, Cyril Imbert, Régis Monneau. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 785-826. doi: 10.3934/dcds.2009.23.785

[6]

Doron Levy, Tiago Requeijo. Modeling group dynamics of phototaxis: From particle systems to PDEs. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 103-128. doi: 10.3934/dcdsb.2008.9.103

[7]

Hedy Attouch, Alexandre Cabot, Zaki Chbani, Hassan Riahi. Rate of convergence of inertial gradient dynamics with time-dependent viscous damping coefficient. Evolution Equations and Control Theory, 2018, 7 (3) : 353-371. doi: 10.3934/eect.2018018

[8]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[9]

Marco Di Francesco, Donatella Donatelli. Singular convergence of nonlinear hyperbolic chemotaxis systems to Keller-Segel type models. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 79-100. doi: 10.3934/dcdsb.2010.13.79

[10]

David Cowan. Rigid particle systems and their billiard models. Discrete and Continuous Dynamical Systems, 2008, 22 (1&2) : 111-130. doi: 10.3934/dcds.2008.22.111

[11]

Jinyan Fan, Jianyu Pan. On the convergence rate of the inexact Levenberg-Marquardt method. Journal of Industrial and Management Optimization, 2011, 7 (1) : 199-210. doi: 10.3934/jimo.2011.7.199

[12]

Armand Bernou. A semigroup approach to the convergence rate of a collisionless gas. Kinetic and Related Models, 2020, 13 (6) : 1071-1106. doi: 10.3934/krm.2020038

[13]

Yves Bourgault, Damien Broizat, Pierre-Emmanuel Jabin. Convergence rate for the method of moments with linear closure relations. Kinetic and Related Models, 2015, 8 (1) : 1-27. doi: 10.3934/krm.2015.8.1

[14]

Andriy Bondarenko, Guy Bouchitté, Luísa Mascarenhas, Rajesh Mahadevan. Rate of convergence for correctors in almost periodic homogenization. Discrete and Continuous Dynamical Systems, 2005, 13 (2) : 503-514. doi: 10.3934/dcds.2005.13.503

[15]

Lee DeVille, Nicole Riemer, Matthew West. Convergence of a generalized Weighted Flow Algorithm for stochastic particle coagulation. Journal of Computational Dynamics, 2019, 6 (1) : 69-94. doi: 10.3934/jcd.2019003

[16]

Jian-Hua Zheng. Dynamics of hyperbolic meromorphic functions. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2273-2298. doi: 10.3934/dcds.2015.35.2273

[17]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[18]

Zehui Jia, Xue Gao, Xingju Cai, Deren Han. The convergence rate analysis of the symmetric ADMM for the nonconvex separable optimization problems. Journal of Industrial and Management Optimization, 2021, 17 (4) : 1943-1971. doi: 10.3934/jimo.2020053

[19]

Fabio Camilli, Claudio Marchi. On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems. Networks and Heterogeneous Media, 2011, 6 (1) : 61-75. doi: 10.3934/nhm.2011.6.61

[20]

Marek Fila, Michael Winkler. Sharp rate of convergence to Barenblatt profiles for a critical fast diffusion equation. Communications on Pure and Applied Analysis, 2015, 14 (1) : 107-119. doi: 10.3934/cpaa.2015.14.107

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]