• Previous Article
    Topological conjugacy for Lipschitz perturbations of non-autonomous systems
  • DCDS Home
  • This Issue
  • Next Article
    Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
September  2016, 36(9): 5025-5046. doi: 10.3934/dcds.2016018

Global dynamics in a fully parabolic chemotaxis system with logistic source

1. 

College of Mathematics and Statistics, Chongqing University, Chongqing 401331, China

Received  July 2015 Revised  January 2016 Published  May 2016

In this paper, we consider a fully parabolic chemotaxis system \begin{eqnarray*}\label{1} \left\{ \begin{array}{llll} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+u-\mu u^r,\quad &x\in \Omega,\quad t>0,\\ v_t=\Delta v-v+u,\quad &x\in\Omega,\quad t>0,\\ \end{array} \right. \end{eqnarray*} with homogeneous Neumann boundary conditions in an arbitrary smooth bounded domain $\Omega\subset R^n(n=2,3)$, where $\chi>0, \mu>0$ and $r\geq 2$.
    For the dimensions $n=2$ and $n=3$, we establish results on the global existence and boundedness of classical solutions to the corresponding initial-boundary problem, provided that $\chi$, $\mu$ and $r$ satisfy some explicit conditions. Apart from this, we also show that if $\frac{\mu^{\frac{1}{r-1}}}{\chi}>20$ and $r\geq 2$ and $r\in \mathbb{N}$ the solution of the system approaches the steady state $\left(\mu^{-\frac{1}{r-1}}, \mu^{-\frac{1}{r-1}}\right)$ as time tends to infinity.
Citation: Ke Lin, Chunlai Mu. Global dynamics in a fully parabolic chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5025-5046. doi: 10.3934/dcds.2016018
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113.

[2]

N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues,, Math. Models Methods Appl. Sci., 25 (2015), 1663. doi: 10.1142/S021820251550044X.

[3]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Colloq. Mathematicum, 68 (1995), 229.

[4]

X. R. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Cont. Dyns. S-A., 35 (2015), 1891. doi: 10.3934/dcds.2015.35.1891.

[5]

X. R. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Zeitschrift für angewandte Mathematik und Physik, 67 (2016). doi: 10.1007/s00033-015-0601-3.

[6]

T. Cieślak and P. H. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré Anal. Non Linéaire, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016.

[7]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045.

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080. doi: 10.1016/j.jde.2014.12.004.

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009.

[10]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138. doi: 10.1016/S0022-247X(02)00147-6.

[11]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106.

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.

[13]

D. Horstemann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, J. Nonlinear Sci., 21 (2011), 231. doi: 10.1007/s00332-010-9082-x.

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[15]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028.

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Am. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6.

[17]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[18]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005.

[19]

Y. H. Li, K. Lin and C. L. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis-haptotaxis model in high dimensions,, Appl. Math. Lett., 50 (2015), 91. doi: 10.1016/j.aml.2015.06.010.

[20]

J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Cont. Dyns. S-B., 20 (2015), 1499. doi: 10.3934/dcdsb.2015.20.1499.

[21]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source,, J. Differential Equations, 258 (2015), 1158. doi: 10.1016/j.jde.2014.10.016.

[22]

M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[23]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.

[24]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042.

[25]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj. Ser. Int., 40 (1997), 411.

[26]

M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion,, SIAM J. MAth. Anal., 46 (2014), 3761. doi: 10.1137/140971853.

[27]

M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant,, J. Differential Equations, 258 (2015), 1592. doi: 10.1016/j.jde.2014.11.009.

[28]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119. doi: 10.1016/S0362-546X(01)00815-X.

[29]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441.

[30]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , ().

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019.

[32]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010.

[33]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[34]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784. doi: 10.1016/j.jde.2014.04.014.

[35]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system,, Z. Angew. Math. Phys., 66 (2015), 2555. doi: 10.1007/s00033-015-0541-y.

[36]

Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source,, J. Differential Equations, 259 (2015), 6142. doi: 10.1016/j.jde.2015.07.019.

[37]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003.

[38]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties,, J. Math. Anal Appl, 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071.

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516. doi: 10.1080/03605300903473426.

[40]

M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[41]

M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146.

[42]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020.

[43]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809. doi: 10.1007/s00332-014-9205-x.

[44]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056. doi: 10.1016/j.jde.2014.04.023.

[45]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9.

[46]

M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity,, Calc. Var. Partial Differential Equations, 54 (2015), 3789. doi: 10.1007/s00526-015-0922-2.

[47]

M. Winkler and K. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045.

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113.

[2]

N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Towards a mathematical theory of Keller-Segel models of pattern formation in biological tissues,, Math. Models Methods Appl. Sci., 25 (2015), 1663. doi: 10.1142/S021820251550044X.

[3]

P. Biler, Existence and nonexistence of solutions for a model of gravitational interaction of particles III,, Colloq. Mathematicum, 68 (1995), 229.

[4]

X. R. Cao, Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces,, Discrete Cont. Dyns. S-A., 35 (2015), 1891. doi: 10.3934/dcds.2015.35.1891.

[5]

X. R. Cao, Boundedness in a three-dimensional chemotaxis-haptotaxis model,, Zeitschrift für angewandte Mathematik und Physik, 67 (2016). doi: 10.1007/s00033-015-0601-3.

[6]

T. Cieślak and P. H. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré Anal. Non Linéaire, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016.

[7]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045.

[8]

T. Cieślak and C. Stinner, New critical exponents in a fully parabolic quasilinear Keller-Segel system and applications to volume filling models,, J. Differential Equations, 258 (2015), 2080. doi: 10.1016/j.jde.2014.12.004.

[9]

T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009.

[10]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138. doi: 10.1016/S0022-247X(02)00147-6.

[11]

H. Gajewski and K. Zacharias, Global behavior of a reaction-diffusion system modelling chemotaxis,, Math. Nachr., 195 (1998), 77. doi: 10.1002/mana.19981950106.

[12]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Normale Superiore, 24 (1997), 633.

[13]

D. Horstemann, Generalizing the Keller-Segel model: Lyapunov functionals, steady state analysis, and blow-up results for multi-species chemotaxis models in the presence of attraction and repulsion between competitive interacting species,, J. Nonlinear Sci., 21 (2011), 231. doi: 10.1007/s00332-010-9082-x.

[14]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022.

[15]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028.

[16]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Am. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6.

[17]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[18]

R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model,, J. Math. Anal. Appl., 343 (2008), 379. doi: 10.1016/j.jmaa.2008.01.005.

[19]

Y. H. Li, K. Lin and C. L. Mu, Boundedness and asymptotic behavior of solutions to a chemotaxis-haptotaxis model in high dimensions,, Appl. Math. Lett., 50 (2015), 91. doi: 10.1016/j.aml.2015.06.010.

[20]

J. Lankeit, Chemotaxis can prevent thresholds on population density,, Discrete Cont. Dyns. S-B., 20 (2015), 1499. doi: 10.3934/dcdsb.2015.20.1499.

[21]

J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source,, J. Differential Equations, 258 (2015), 1158. doi: 10.1016/j.jde.2014.10.016.

[22]

M. M. Porzio and V. Vespri, Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations,, J. Differential Equations, 103 (1993), 146. doi: 10.1006/jdeq.1993.1045.

[23]

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581.

[24]

T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains,, J. Inequal. Appl., 6 (2001), 37. doi: 10.1155/S1025583401000042.

[25]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj. Ser. Int., 40 (1997), 411.

[26]

M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion,, SIAM J. MAth. Anal., 46 (2014), 3761. doi: 10.1137/140971853.

[27]

M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant,, J. Differential Equations, 258 (2015), 1592. doi: 10.1016/j.jde.2014.11.009.

[28]

K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations,, Nonlinear Anal., 51 (2002), 119. doi: 10.1016/S0362-546X(01)00815-X.

[29]

K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations,, Funkc. Ekvacioj. Ser. Int., 44 (2001), 441.

[30]

Y. Tao, Boundedness in a two-dimensional chemotaxis-haptotaxis system,, , ().

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019.

[32]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010.

[33]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[34]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784. doi: 10.1016/j.jde.2014.04.014.

[35]

Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system,, Z. Angew. Math. Phys., 66 (2015), 2555. doi: 10.1007/s00033-015-0541-y.

[36]

Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source,, J. Differential Equations, 259 (2015), 6142. doi: 10.1016/j.jde.2015.07.019.

[37]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003.

[38]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and boundedness properties,, J. Math. Anal Appl, 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071.

[39]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516. doi: 10.1080/03605300903473426.

[40]

M. Winkler, Aggregation versus global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[41]

M. Winkler, Does a volume-filling effect always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146.

[42]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020.

[43]

M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?,, J. Nonlinear Sci., 24 (2014), 809. doi: 10.1007/s00332-014-9205-x.

[44]

M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening,, J. Differential Equations, 257 (2014), 1056. doi: 10.1016/j.jde.2014.04.023.

[45]

M. Winkler, Stabilization in a two-dimensional chemotaxis-Navier-Stokes system,, Arch. Ration. Mech. Anal., 211 (2014), 455. doi: 10.1007/s00205-013-0678-9.

[46]

M. Winkler, Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity,, Calc. Var. Partial Differential Equations, 54 (2015), 3789. doi: 10.1007/s00526-015-0922-2.

[47]

M. Winkler and K. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045.

[1]

Liangchen Wang, Yuhuan Li, Chunlai Mu. Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 789-802. doi: 10.3934/dcds.2014.34.789

[2]

Pan Zheng, Chunlai Mu, Xuegang Hu. Boundedness and blow-up for a chemotaxis system with generalized volume-filling effect and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2299-2323. doi: 10.3934/dcds.2015.35.2299

[3]

Shijie Shi, Zhengrong Liu, Hai-Yang Jin. Boundedness and large time behavior of an attraction-repulsion chemotaxis model with logistic source. Kinetic & Related Models, 2017, 10 (3) : 855-878. doi: 10.3934/krm.2017034

[4]

Ling Liu, Jiashan Zheng. Global existence and boundedness of solution of a parabolic-parabolic-ODE chemotaxis-haptotaxis model with (generalized) logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3357-3377. doi: 10.3934/dcdsb.2018324

[5]

Chunhua Jin. Global classical solution and stability to a coupled chemotaxis-fluid model with logistic source. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3547-3566. doi: 10.3934/dcds.2018150

[6]

Tomomi Yokota, Noriaki Yoshino. Existence of solutions to chemotaxis dynamics with logistic source. Conference Publications, 2015, 2015 (special) : 1125-1133. doi: 10.3934/proc.2015.1125

[7]

Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503

[8]

Masaaki Mizukami. Boundedness and asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2301-2319. doi: 10.3934/dcdsb.2017097

[9]

Abelardo Duarte-Rodríguez, Lucas C. F. Ferreira, Élder J. Villamizar-Roa. Global existence for an attraction-repulsion chemotaxis fluid model with logistic source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 423-447. doi: 10.3934/dcdsb.2018180

[10]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[11]

Rachidi B. Salako, Wenxian Shen. Spreading speeds and traveling waves of a parabolic-elliptic chemotaxis system with logistic source on $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6189-6225. doi: 10.3934/dcds.2017268

[12]

Ke Lin, Chunlai Mu. Convergence of global and bounded solutions of a two-species chemotaxis model with a logistic source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2233-2260. doi: 10.3934/dcdsb.2017094

[13]

Rachidi B. Salako, Wenxian Shen. Existence of traveling wave solutions to parabolic-elliptic-elliptic chemotaxis systems with logistic source. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 293-319. doi: 10.3934/dcdss.2020017

[14]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[15]

Monica Marras, Stella Vernier-Piro, Giuseppe Viglialoro. Decay in chemotaxis systems with a logistic term. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 257-268. doi: 10.3934/dcdss.2020014

[16]

Wei Mao, Liangjian Hu, Xuerong Mao. Asymptotic boundedness and stability of solutions to hybrid stochastic differential equations with jumps and the Euler-Maruyama approximation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 587-613. doi: 10.3934/dcdsb.2018198

[17]

Tomás Caraballo, Francisco Morillas, José Valero. Asymptotic behaviour of a logistic lattice system. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4019-4037. doi: 10.3934/dcds.2014.34.4019

[18]

Tobias Black. Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1253-1272. doi: 10.3934/dcdsb.2017061

[19]

Masaaki Mizukami. Improvement of conditions for asymptotic stability in a two-species chemotaxis-competition model with signal-dependent sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 269-278. doi: 10.3934/dcdss.2020015

[20]

Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]