-
Previous Article
Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement
- DCDS Home
- This Issue
-
Next Article
Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
Correlation integral and determinism for a family of $2^\infty$ maps
1. | Slovanet a.s., Záhradnícka 151, 821 08 Bratislava, Slovak Republic |
References:
[1] |
Springer-Verlag, Berlin, 1992. |
[2] |
Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[3] |
Proc. Amer. Math. Soc., 143 (2015), 3659-3670.
doi: 10.1090/S0002-9939-2015-12526-9. |
[4] |
Enseign. Math. (2), 40 (1994), 249-266. |
[5] |
C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A323-A325. |
[6] |
$2^{nd}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. |
[7] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350147, 13 pp.
doi: 10.1142/S0218127413501472. |
[8] |
Phys. D, 9 (1983), 189-208.
doi: 10.1016/0167-2789(83)90298-1. |
[9] |
Proc. Amer. Math. Soc., 127 (1999), 2045-2052.
doi: 10.1090/S0002-9939-99-04799-1. |
[10] |
$2^{nd}$ edition, Cambridge University Press, Cambridge, 2004. |
[11] |
in Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Springer, Berlin, 729 (1979), 144-152. |
[12] |
J. Statist. Phys., 90 (1998), 1047-1049.
doi: 10.1023/A:1023253709865. |
[13] |
J. Statist. Phys., 71 (1993), 529-547.
doi: 10.1007/BF01058436. |
[14] |
Random Comput. Dynam., 3 (1995), 137-156. |
[15] |
S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , (). Google Scholar |
[16] |
Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9. |
[17] |
Physics Letters A, 171 (1992), 199-203.
doi: 10.1016/0375-9601(92)90426-M. |
show all references
References:
[1] |
Springer-Verlag, Berlin, 1992. |
[2] |
Topology Appl., 140 (2004), 151-161.
doi: 10.1016/j.topol.2003.07.006. |
[3] |
Proc. Amer. Math. Soc., 143 (2015), 3659-3670.
doi: 10.1090/S0002-9939-2015-12526-9. |
[4] |
Enseign. Math. (2), 40 (1994), 249-266. |
[5] |
C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A323-A325. |
[6] |
$2^{nd}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. |
[7] |
Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350147, 13 pp.
doi: 10.1142/S0218127413501472. |
[8] |
Phys. D, 9 (1983), 189-208.
doi: 10.1016/0167-2789(83)90298-1. |
[9] |
Proc. Amer. Math. Soc., 127 (1999), 2045-2052.
doi: 10.1090/S0002-9939-99-04799-1. |
[10] |
$2^{nd}$ edition, Cambridge University Press, Cambridge, 2004. |
[11] |
in Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Springer, Berlin, 729 (1979), 144-152. |
[12] |
J. Statist. Phys., 90 (1998), 1047-1049.
doi: 10.1023/A:1023253709865. |
[13] |
J. Statist. Phys., 71 (1993), 529-547.
doi: 10.1007/BF01058436. |
[14] |
Random Comput. Dynam., 3 (1995), 137-156. |
[15] |
S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , (). Google Scholar |
[16] |
Trans. Amer. Math. Soc., 297 (1986), 269-282.
doi: 10.1090/S0002-9947-1986-0849479-9. |
[17] |
Physics Letters A, 171 (1992), 199-203.
doi: 10.1016/0375-9601(92)90426-M. |
[1] |
Christoforidou Amalia, Christian-Oliver Ewald. A lattice method for option evaluation with regime-switching asset correlation structure. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1729-1752. doi: 10.3934/jimo.2020042 |
[2] |
Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001 |
[3] |
Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006 |
[4] |
Huaning Liu, Xi Liu. On the correlation measures of orders $ 3 $ and $ 4 $ of binary sequence of period $ p^2 $ derived from Fermat quotients. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2021008 |
[5] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[6] |
Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021094 |
[7] |
Charles Fulton, David Pearson, Steven Pruess. Characterization of the spectral density function for a one-sided tridiagonal Jacobi matrix operator. Conference Publications, 2013, 2013 (special) : 247-257. doi: 10.3934/proc.2013.2013.247 |
[8] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375 |
[9] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[10] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[11] |
Saima Rashid, Fahd Jarad, Zakia Hammouch. Some new bounds analogous to generalized proportional fractional integral operator with respect to another function. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021020 |
[12] |
Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009 |
[13] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[14] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[15] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[16] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[17] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[18] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[19] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[20] |
Huan Zhang, Jun Zhou. Asymptotic behaviors of solutions to a sixth-order Boussinesq equation with logarithmic nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021034 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]