• Previous Article
    Dimension reduction for rotating Bose-Einstein condensates with anisotropic confinement
  • DCDS Home
  • This Issue
  • Next Article
    Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions
September  2016, 36(9): 5067-5096. doi: 10.3934/dcds.2016020

Correlation integral and determinism for a family of $2^\infty$ maps

1. 

Slovanet a.s., Záhradnícka 151, 821 08 Bratislava, Slovak Republic

Received  June 2015 Revised  March 2016 Published  May 2016

The correlation integral and determinism are quantitative characteristics of a dynamical system based on the recurrence of orbits. For strongly non-chaotic interval maps, the determinism equals $1$ for every small enough threshold. This means that trajectories of such systems are perfectly predictable in the infinite horizon. In this paper we study the correlation integral and determinism for the family of $2^\infty$ non-chaotic maps, first considered by Delahaye in 1980. The determinism in a finite horizon equals $1$. However, the behaviour of the determinism in the infinite horizon is counter-intuitive. Sharp bounds on the determinism are provided.
Citation: Jana Majerová. Correlation integral and determinism for a family of $2^\infty$ maps. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5067-5096. doi: 10.3934/dcds.2016020
References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, Berlin, 1992.

[2]

L. S. Block and J. Keesling, A characterization of adding machine maps, Topology Appl., 140 (2004), 151-161. doi: 10.1016/j.topol.2003.07.006.

[3]

J. P. Boroński and P. Oprocha, On indecomposability in chaotic attractors, Proc. Amer. Math. Soc., 143 (2015), 3659-3670. doi: 10.1090/S0002-9939-2015-12526-9.

[4]

P. Collas and D. Klein, An ergodic adding machine on the Cantor set, Enseign. Math. (2), 40 (1994), 249-266.

[5]

J.-P. Delahaye, Fonctions admettant des cycles d'ordre n'importe quelle puissance de $2$ et aucun autre cycle, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A323-A325.

[6]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.

[7]

M. Grendár, J. Majerová and V. Špitalský, Strong laws for recurrence quantification analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350147, 13 pp. doi: 10.1142/S0218127413501472.

[8]

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Phys. D, 9 (1983), 189-208. doi: 10.1016/0167-2789(83)90298-1.

[9]

R. Hric, Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc., 127 (1999), 2045-2052. doi: 10.1090/S0002-9939-99-04799-1.

[10]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, $2^{nd}$ edition, Cambridge University Press, Cambridge, 2004.

[11]

M. Misiurewicz, Invariant measures for continuous transformations of $[0,1]$ with zero topological entropy, in Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Springer, Berlin, 729 (1979), 144-152.

[12]

A. Manning and K. Simon, A short existence proof for correlation dimension, J. Statist. Phys., 90 (1998), 1047-1049. doi: 10.1023/A:1023253709865.

[13]

Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, J. Statist. Phys., 71 (1993), 529-547. doi: 10.1007/BF01058436.

[14]

Ya. B. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random Comput. Dynam., 3 (1995), 137-156.

[15]

S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , (). 

[16]

J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282. doi: 10.1090/S0002-9947-1986-0849479-9.

[17]

J. P. Zbilut and C. L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, 171 (1992), 199-203. doi: 10.1016/0375-9601(92)90426-M.

show all references

References:
[1]

L. S. Block and W. A. Coppel, Dynamics in One Dimension, Springer-Verlag, Berlin, 1992.

[2]

L. S. Block and J. Keesling, A characterization of adding machine maps, Topology Appl., 140 (2004), 151-161. doi: 10.1016/j.topol.2003.07.006.

[3]

J. P. Boroński and P. Oprocha, On indecomposability in chaotic attractors, Proc. Amer. Math. Soc., 143 (2015), 3659-3670. doi: 10.1090/S0002-9939-2015-12526-9.

[4]

P. Collas and D. Klein, An ergodic adding machine on the Cantor set, Enseign. Math. (2), 40 (1994), 249-266.

[5]

J.-P. Delahaye, Fonctions admettant des cycles d'ordre n'importe quelle puissance de $2$ et aucun autre cycle, C. R. Acad. Sci. Paris Sér. A-B, 291 (1980), A323-A325.

[6]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems, $2^{nd}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989.

[7]

M. Grendár, J. Majerová and V. Špitalský, Strong laws for recurrence quantification analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350147, 13 pp. doi: 10.1142/S0218127413501472.

[8]

P. Grassberger and I. Procaccia, Measuring the strangeness of strange attractors, Phys. D, 9 (1983), 189-208. doi: 10.1016/0167-2789(83)90298-1.

[9]

R. Hric, Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc., 127 (1999), 2045-2052. doi: 10.1090/S0002-9939-99-04799-1.

[10]

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, $2^{nd}$ edition, Cambridge University Press, Cambridge, 2004.

[11]

M. Misiurewicz, Invariant measures for continuous transformations of $[0,1]$ with zero topological entropy, in Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), Springer, Berlin, 729 (1979), 144-152.

[12]

A. Manning and K. Simon, A short existence proof for correlation dimension, J. Statist. Phys., 90 (1998), 1047-1049. doi: 10.1023/A:1023253709865.

[13]

Ya. B. Pesin, On rigorous mathematical definitions of correlation dimension and generalized spectrum for dimensions, J. Statist. Phys., 71 (1993), 529-547. doi: 10.1007/BF01058436.

[14]

Ya. B. Pesin and A. Tempelman, Correlation dimension of measures invariant under group actions, Random Comput. Dynam., 3 (1995), 137-156.

[15]

S. Ruette, Chaos for continuous interval maps,, 2003. Available from: , (). 

[16]

J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc., 297 (1986), 269-282. doi: 10.1090/S0002-9947-1986-0849479-9.

[17]

J. P. Zbilut and C. L. Webber Jr., Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A, 171 (1992), 199-203. doi: 10.1016/0375-9601(92)90426-M.

[1]

Houduo Qi, ZHonghang Xia, Guangming Xing. An application of the nearest correlation matrix on web document classification. Journal of Industrial and Management Optimization, 2007, 3 (4) : 701-713. doi: 10.3934/jimo.2007.3.701

[2]

Joshua Du, Jun Ji. An integral representation of the determinant of a matrix and its applications. Conference Publications, 2005, 2005 (Special) : 225-232. doi: 10.3934/proc.2005.2005.225

[3]

Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure and Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193

[4]

Josef Diblík, Zdeněk Svoboda. Asymptotic properties of delayed matrix exponential functions via Lambert function. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 123-144. doi: 10.3934/dcdsb.2018008

[5]

Jiongxuan Zheng, Joseph D. Skufca, Erik M. Bollt. Heart rate variability as determinism with jump stochastic parameters. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1253-1264. doi: 10.3934/mbe.2013.10.1253

[6]

Pei Wang, Ling Zhang, Zhongfei Li. Asset allocation for a DC pension plan with learning about stock return predictability. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021138

[7]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems and Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[8]

Ziyi Cai, Haiyang He. Asymptotic behavior of solutions for nonlinear integral equations with Hénon type on the unit Ball. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4349-4362. doi: 10.3934/cpaa.2020196

[9]

Jiyoung Han, Seonhee Lim, Keivan Mallahi-Karai. Asymptotic distribution of values of isotropic here quadratic forms at S-integral points. Journal of Modern Dynamics, 2017, 11: 501-550. doi: 10.3934/jmd.2017020

[10]

José M. Arrieta, Esperanza Santamaría. Estimates on the distance of inertial manifolds. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 3921-3944. doi: 10.3934/dcds.2014.34.3921

[11]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[12]

Vladimír Špitalský. Local correlation entropy. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[13]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[14]

Nian Li, Xiaohu Tang, Tor Helleseth. A class of quaternary sequences with low correlation. Advances in Mathematics of Communications, 2015, 9 (2) : 199-210. doi: 10.3934/amc.2015.9.199

[15]

Xin-Guo Liu, Kun Wang. A multigrid method for the maximal correlation problem. Numerical Algebra, Control and Optimization, 2012, 2 (4) : 785-796. doi: 10.3934/naco.2012.2.785

[16]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[17]

Meijuan Shang, Yanan Liu, Lingchen Kong, Xianchao Xiu, Ying Yang. Nonconvex mixed matrix minimization. Mathematical Foundations of Computing, 2019, 2 (2) : 107-126. doi: 10.3934/mfc.2019009

[18]

Paul Skerritt, Cornelia Vizman. Dual pairs for matrix groups. Journal of Geometric Mechanics, 2019, 11 (2) : 255-275. doi: 10.3934/jgm.2019014

[19]

Adel Alahmadi, Hamed Alsulami, S.K. Jain, Efim Zelmanov. On matrix wreath products of algebras. Electronic Research Announcements, 2017, 24: 78-86. doi: 10.3934/era.2017.24.009

[20]

Konstantinos Drakakis, Roderick Gow, Scott Rickard. Common distance vectors between Costas arrays. Advances in Mathematics of Communications, 2009, 3 (1) : 35-52. doi: 10.3934/amc.2009.3.35

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]