\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A new class of 3-dimensional piecewise affine systems with homoclinic orbits

Abstract Related Papers Cited by
  • Based on mathematical analysis, this paper proves the existence of homoclinic orbits in a new class of 3-dimensional piecewise affine systems, and gives an example to illustrate the effectiveness of the method.
    Mathematics Subject Classification: Primary: 37D45; Secondary: 37G20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems, Chaos, 16 (2006), 013115, 14pp.doi: 10.1063/1.2149527.

    [2]

    M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption, IET Image Process., 8 (2014), 33-43.doi: 10.1049/iet-ipr.2012.0586.

    [3]

    S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit, Chaos, 20 (2010), 23107, 7pp.

    [4]

    T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization, Chaos Solitons Fract., 24 (2005), 241-255.doi: 10.1016/S0960-0779(04)00542-9.

    [5]

    V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032-1048.doi: 10.1137/070709542.

    [6]

    V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems, Chaos, 20 (2010), 013124, 8pp.doi: 10.1063/1.3339819.

    [7]

    M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems, World Scientific, 2002.

    [8]

    S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators, Nonlinear Dyn., 69 (2012), 1915-1927.doi: 10.1007/s11071-012-0396-0.

    [9]

    S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems, Int. J. Bifurc. Chaos, 24 (2014), 1450158, 16pp.doi: 10.1142/S0218127414501582.

    [10]

    T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control, Electron Lett., 37 (2001), p1.doi: 10.1049/el:20010033.

    [11]

    J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller, Chaos, 12 (2002), 344-349.

    [12]

    R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets, Physica D, 186 (2003), 133-147.doi: 10.1016/j.physd.2003.08.002.

    [13]

    V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification, Chaos, 23 (2013), 033136, 6pp.doi: 10.1063/1.4821475.

    [14]

    I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems, IET Commun., 1 (2007), 1015-1022.

    [15]

    L. P. Shil'nikov, A case of the existence of a countable number of periodic motions, Sov. Math.Dokl., 6 (1965), 163-166.

    [16]

    L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type, Math. USSR Sb., 10 (1970), 91-102.

    [17]

    L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics, Part I, World Scientific, Singapore, 1998.doi: 10.1142/9789812798596.

    [18]

    L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, Singapore, 2001.doi: 10.1142/9789812798558_0001.

    [19]

    C. Tresser, About some theorems by L. P. Shil'nikov, Inst. H. Poincare Phys. Thoré., 40 (1984), 441-461.

    [20]

    K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop, IEEE Trans. Circuits Syst., 45 (1998), 979-983.

    [21]

    S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, $2^{nd}$ edition, Springer-Verlag, New York, 2003.

    [22]

    D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof, Found Comput. Math., 6 (2006), 495-535.doi: 10.1007/s10208-005-0201-2.

    [23]

    X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator, Electron. Lett., 38 (2002), 623-625.doi: 10.1049/el:20020456.

    [24]

    X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback, Chaos Solitons Fract., 18 (2003), 25-29.doi: 10.1016/S0960-0779(02)00638-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(139) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return