September  2016, 36(9): 5119-5129. doi: 10.3934/dcds.2016022

A new class of 3-dimensional piecewise affine systems with homoclinic orbits

1. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, 430074, China, China

Received  July 2015 Revised  December 2015 Published  May 2016

Based on mathematical analysis, this paper proves the existence of homoclinic orbits in a new class of 3-dimensional piecewise affine systems, and gives an example to illustrate the effectiveness of the method.
Citation: Tiantian Wu, Xiao-Song Yang. A new class of 3-dimensional piecewise affine systems with homoclinic orbits. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5119-5129. doi: 10.3934/dcds.2016022
References:
[1]

G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems,, Chaos, 16 (2006).  doi: 10.1063/1.2149527.  Google Scholar

[2]

M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption,, IET Image Process., 8 (2014), 33.  doi: 10.1049/iet-ipr.2012.0586.  Google Scholar

[3]

S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit,, Chaos, 20 (2010).   Google Scholar

[4]

T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization,, Chaos Solitons Fract., 24 (2005), 241.  doi: 10.1016/S0960-0779(04)00542-9.  Google Scholar

[5]

V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032.  doi: 10.1137/070709542.  Google Scholar

[6]

V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems,, Chaos, 20 (2010).  doi: 10.1063/1.3339819.  Google Scholar

[7]

M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems,, World Scientific, (2002).   Google Scholar

[8]

S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators,, Nonlinear Dyn., 69 (2012), 1915.  doi: 10.1007/s11071-012-0396-0.  Google Scholar

[9]

S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414501582.  Google Scholar

[10]

T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control,, Electron Lett., 37 (2001).  doi: 10.1049/el:20010033.  Google Scholar

[11]

J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller,, Chaos, 12 (2002), 344.   Google Scholar

[12]

R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets,, Physica D, 186 (2003), 133.  doi: 10.1016/j.physd.2003.08.002.  Google Scholar

[13]

V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification,, Chaos, 23 (2013).  doi: 10.1063/1.4821475.  Google Scholar

[14]

I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems,, IET Commun., 1 (2007), 1015.   Google Scholar

[15]

L. P. Shil'nikov, A case of the existence of a countable number of periodic motions,, Sov. Math.Dokl., 6 (1965), 163.   Google Scholar

[16]

L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type,, Math. USSR Sb., 10 (1970), 91.   Google Scholar

[17]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics,, Part I, (1998).  doi: 10.1142/9789812798596.  Google Scholar

[18]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics,, Part II, (2001).  doi: 10.1142/9789812798558_0001.  Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shil'nikov,, Inst. H. Poincare Phys. Thoré., 40 (1984), 441.   Google Scholar

[20]

K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop,, IEEE Trans. Circuits Syst., 45 (1998), 979.   Google Scholar

[21]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,, $2^{nd}$ edition, (2003).   Google Scholar

[22]

D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof,, Found Comput. Math., 6 (2006), 495.  doi: 10.1007/s10208-005-0201-2.  Google Scholar

[23]

X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator,, Electron. Lett., 38 (2002), 623.  doi: 10.1049/el:20020456.  Google Scholar

[24]

X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback,, Chaos Solitons Fract., 18 (2003), 25.  doi: 10.1016/S0960-0779(02)00638-0.  Google Scholar

show all references

References:
[1]

G. F. V. Amaral, C. Letellier and L. A. Aguirre, Piecewise affine models of chaotic attractors: The Rossler and Lorenz systems,, Chaos, 16 (2006).  doi: 10.1063/1.2149527.  Google Scholar

[2]

M. L. Barakat, A. S. Mansingka, A. G. Radwan and K. N. Salama, Hardware stream cipher with controllable chaos generator for colour image encryption,, IET Image Process., 8 (2014), 33.  doi: 10.1049/iet-ipr.2012.0586.  Google Scholar

[3]

S. Chakraborty and S. K. Dana, Shil'nikov chaos and mixed-mode oscillation in Chua's circuit,, Chaos, 20 (2010).   Google Scholar

[4]

T. Chien and T. Liao, Design of secure digital communication systems using chaotic modulation, cryptography and chaotic synchronization,, Chaos Solitons Fract., 24 (2005), 241.  doi: 10.1016/S0960-0779(04)00542-9.  Google Scholar

[5]

V. Carmona, F. Fernández-Sánchez and A. E. Teruel, Existence of a reversible T-point heteroclinic cycle in a piecewise linear version of the Michelson system,, SIAM J. Appl. Dyn. Syst., 7 (2008), 1032.  doi: 10.1137/070709542.  Google Scholar

[6]

V. Carmona, F. Fernández-Sánchez, E. García-Medina and A. E. Teruel, Existence of homoclinic connections in continuous piecewise linear systems,, Chaos, 20 (2010).  doi: 10.1063/1.3339819.  Google Scholar

[7]

M. di Bernardo and C. K. Tse, Chaos in Power Electronics: An Overview, Chaos in Circuits and Systems,, World Scientific, (2002).   Google Scholar

[8]

S. M. Huan, Q. D. Li and X.-S. Yang, Chaos in three-dimensional hybrid systems and design of chaos generators,, Nonlinear Dyn., 69 (2012), 1915.  doi: 10.1007/s11071-012-0396-0.  Google Scholar

[9]

S. M. Huan and X.-S. Yang, Existence of chaotic invariant set in a class of 4-dimensional piecewise linear dynamical systems,, Int. J. Bifurc. Chaos, 24 (2014).  doi: 10.1142/S0218127414501582.  Google Scholar

[10]

T. Kousaka, T. Ueta and H. Kawakami, Chaos in a simple hybrid system and its control,, Electron Lett., 37 (2001).  doi: 10.1049/el:20010033.  Google Scholar

[11]

J. Lü, T. Zhou, G. Chen and X.-S. Yang, Generating chaos with a switching piecewise-linear controller,, Chaos, 12 (2002), 344.   Google Scholar

[12]

R. O. Medrano-T., M. S. Baptista and I. L. Caldas, Homoclinic orbits in a piecewise system and their relation with invariant sets,, Physica D, 186 (2003), 133.  doi: 10.1016/j.physd.2003.08.002.  Google Scholar

[13]

V. Nair and R. I. Sujith, Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification,, Chaos, 23 (2013).  doi: 10.1063/1.4821475.  Google Scholar

[14]

I. Pehlivan and Y. Uyaroglu, Simplified chaotic diffusionless Lorenz attractor and its application to secure communication systems,, IET Commun., 1 (2007), 1015.   Google Scholar

[15]

L. P. Shil'nikov, A case of the existence of a countable number of periodic motions,, Sov. Math.Dokl., 6 (1965), 163.   Google Scholar

[16]

L. P. Shil'nikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type,, Math. USSR Sb., 10 (1970), 91.   Google Scholar

[17]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative theory in Nonlinear Dynamics,, Part I, (1998).  doi: 10.1142/9789812798596.  Google Scholar

[18]

L. P. Shil'nikov, A. Shil'nikov, D. Turaev and L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics,, Part II, (2001).  doi: 10.1142/9789812798558_0001.  Google Scholar

[19]

C. Tresser, About some theorems by L. P. Shil'nikov,, Inst. H. Poincare Phys. Thoré., 40 (1984), 441.   Google Scholar

[20]

K. Watada, T. Endo and H. Seishi, Shilnikov orbits in an autonomous third-order chaotic phase-locked loop,, IEEE Trans. Circuits Syst., 45 (1998), 979.   Google Scholar

[21]

S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos,, $2^{nd}$ edition, (2003).   Google Scholar

[22]

D. Wilczak, The existence of Shilnikov homoclinic orbits in the Michelson system: A computer assisted proof,, Found Comput. Math., 6 (2006), 495.  doi: 10.1007/s10208-005-0201-2.  Google Scholar

[23]

X.-S. Yang and Q. D. Li, Chaos generator via Wien-bridge oscillator,, Electron. Lett., 38 (2002), 623.  doi: 10.1049/el:20020456.  Google Scholar

[24]

X.-S. Yang and Q. D. Li, Generate n-scroll attractor in linear system by scalar output feedback,, Chaos Solitons Fract., 18 (2003), 25.  doi: 10.1016/S0960-0779(02)00638-0.  Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[6]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[7]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[8]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[11]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[12]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[13]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[14]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[15]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[16]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[20]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]