September  2016, 36(9): 5183-5199. doi: 10.3934/dcds.2016025

Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity

1. 

35 River Drive S. Apt. 210, Jersey City, NJ 07310, United States

Received  December 2014 Revised  February 2016 Published  May 2016

We consider a space-inhomogeneous KPP equation with a nonlocal diffusion and an almost-periodic nonlinearity. By employing and adapting the theory of homogenization, we show that solutions of this equation asymptotically converge to its stationary states in regions of space separated by a front that is determined by a Hamilton-Jacobi variational inequality.
Citation: Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025
References:
[1]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations,, in Annales de l'Institut Henri Poincaré. Analyse non liné}aire, (1996), 293.   Google Scholar

[2]

M. Arisawa, Viscosity solution's approach to jump processes arising in mathematical finances,, in Proceedings of 10th International conference on mathematical finances sponcered by Daiwa securuty insurance, (2005).   Google Scholar

[3]

M. Arisawa, A localization of the Lévy operators arising in mathematical finances,, Stochastic Processes and Applications To Mathematical Finance, (2007), 23.  doi: 10.1142/9789812770448_0002.  Google Scholar

[4]

M. Arisawa, Homogenization of a class of integro-differential equations with Lévy operators,, Communications in Partial Differential Equations, 34 (2009), 617.  doi: 10.1080/03605300902963518.  Google Scholar

[5]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial differential equations and related topics, 446 (1975), 5.   Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert et al., On the Dirichlet problem for second-order elliptic integro-differential equations,, Indiana University Mathematics Journal, 57 (2008), 213.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[7]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result,, Methods and Applications of Analysis, 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[8]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-{KPP} equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[9]

J. Coville, J. Dávila and S. Martinez, Nonlocal anisotropic dispersal with monostable nonlinearity,, Journal of Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[10]

J. Coville, J. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bulletin of the American Mathematical Society, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall, P.-L. Lions and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution,, Archive for Rational Mechanics and Analysis, 105 (1989), 163.  doi: 10.1007/BF00250835.  Google Scholar

[13]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.  doi: 10.1017/S0308210500032121.  Google Scholar

[14]

L. Evans and P. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana University mathematics journal, 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, The Annals of Probability, 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[17]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations,, in International conference on differential equations, (2000), 600.   Google Scholar

[18]

H. Ishii and S. Koike, Viscosity solutions of functional differential equations,, Advances in Mathematical Sciences and Applications, 3 (1994), 191.   Google Scholar

[19]

A. Kolmogorov, I. Petrovsky and N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem,, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1.   Google Scholar

[20]

T. S. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-{KPP} reactions and non-local diffusion,, Trans. Amer. Math. Soc., (2015).  doi: 10.1090/tran/6602.  Google Scholar

[21]

P.-L. Lions, G. Papanicolaou and S. R. Varadhan, Homogenization of Hamilton-Jacobi equations,, Preliminary version., ().   Google Scholar

[22]

A. J. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,, Nonlinearity, 7 (1994), 1.  doi: 10.1088/0951-7715/7/1/001.  Google Scholar

[23]

B. Perthame and P. Souganidis, Front propagation for a jump process model arising in spatial ecology,, Dynamical Systems, 13 (2005), 1235.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

show all references

References:
[1]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations,, in Annales de l'Institut Henri Poincaré. Analyse non liné}aire, (1996), 293.   Google Scholar

[2]

M. Arisawa, Viscosity solution's approach to jump processes arising in mathematical finances,, in Proceedings of 10th International conference on mathematical finances sponcered by Daiwa securuty insurance, (2005).   Google Scholar

[3]

M. Arisawa, A localization of the Lévy operators arising in mathematical finances,, Stochastic Processes and Applications To Mathematical Finance, (2007), 23.  doi: 10.1142/9789812770448_0002.  Google Scholar

[4]

M. Arisawa, Homogenization of a class of integro-differential equations with Lévy operators,, Communications in Partial Differential Equations, 34 (2009), 617.  doi: 10.1080/03605300902963518.  Google Scholar

[5]

D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation,, in Partial differential equations and related topics, 446 (1975), 5.   Google Scholar

[6]

G. Barles, E. Chasseigne and C. Imbert et al., On the Dirichlet problem for second-order elliptic integro-differential equations,, Indiana University Mathematics Journal, 57 (2008), 213.  doi: 10.1512/iumj.2008.57.3315.  Google Scholar

[7]

G. Barles, S. Mirrahimi and B. Perthame, Concentration in Lotka-Volterra parabolic or integral equations: A general convergence result,, Methods and Applications of Analysis, 16 (2009), 321.  doi: 10.4310/MAA.2009.v16.n3.a4.  Google Scholar

[8]

H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-{KPP} equation: Travelling waves and steady states,, Nonlinearity, 22 (2009), 2813.  doi: 10.1088/0951-7715/22/12/002.  Google Scholar

[9]

J. Coville, J. Dávila and S. Martinez, Nonlocal anisotropic dispersal with monostable nonlinearity,, Journal of Differential Equations, 244 (2008), 3080.  doi: 10.1016/j.jde.2007.11.002.  Google Scholar

[10]

J. Coville, J. Davila and S. Martinez, Pulsating fronts for nonlocal dispersion and KPP nonlinearity,, in Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 30 (2013), 179.  doi: 10.1016/j.anihpc.2012.07.005.  Google Scholar

[11]

M. G. Crandall, H. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations,, Bulletin of the American Mathematical Society, 27 (1992), 1.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[12]

M. G. Crandall, P.-L. Lions and P. E. Souganidis, Maximal solutions and universal bounds for some partial differential equations of evolution,, Archive for Rational Mechanics and Analysis, 105 (1989), 163.  doi: 10.1007/BF00250835.  Google Scholar

[13]

L. C. Evans, Periodic homogenisation of certain fully nonlinear partial differential equations,, Proc. Roy. Soc. Edinburgh Sect. A, 120 (1992), 245.  doi: 10.1017/S0308210500032121.  Google Scholar

[14]

L. Evans and P. Souganidis, A PDE approach to geometric optics for certain semilinear parabolic equations,, Indiana University mathematics journal, 38 (1989), 141.  doi: 10.1512/iumj.1989.38.38007.  Google Scholar

[15]

R. A. Fisher, The wave of advance of advantageous genes,, Annals of Eugenics, 7 (1937), 355.  doi: 10.1111/j.1469-1809.1937.tb02153.x.  Google Scholar

[16]

M. Freidlin, Limit theorems for large deviations and reaction-diffusion equations,, The Annals of Probability, 13 (1985), 639.  doi: 10.1214/aop/1176992901.  Google Scholar

[17]

H. Ishii, Almost periodic homogenization of Hamilton-Jacobi equations,, in International conference on differential equations, (2000), 600.   Google Scholar

[18]

H. Ishii and S. Koike, Viscosity solutions of functional differential equations,, Advances in Mathematical Sciences and Applications, 3 (1994), 191.   Google Scholar

[19]

A. Kolmogorov, I. Petrovsky and N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a biology problem,, Bull. Moscow State Univ. Ser. A: Math. Mech, 1 (1937), 1.   Google Scholar

[20]

T. S. Lim and A. Zlatos, Transition fronts for inhomogeneous Fisher-{KPP} reactions and non-local diffusion,, Trans. Amer. Math. Soc., (2015).  doi: 10.1090/tran/6602.  Google Scholar

[21]

P.-L. Lions, G. Papanicolaou and S. R. Varadhan, Homogenization of Hamilton-Jacobi equations,, Preliminary version., ().   Google Scholar

[22]

A. J. Majda and P. E. Souganidis, Large scale front dynamics for turbulent reaction-diffusion equations with separated velocity scales,, Nonlinearity, 7 (1994), 1.  doi: 10.1088/0951-7715/7/1/001.  Google Scholar

[23]

B. Perthame and P. Souganidis, Front propagation for a jump process model arising in spatial ecology,, Dynamical Systems, 13 (2005), 1235.  doi: 10.3934/dcds.2005.13.1235.  Google Scholar

[1]

Frederic Abergel, Remi Tachet. A nonlinear partial integro-differential equation from mathematical finance. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 907-917. doi: 10.3934/dcds.2010.27.907

[2]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[3]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[4]

Giuseppe Maria Coclite, Mario Michele Coclite. Positive solutions of an integro-differential equation in all space with singular nonlinear term. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 885-907. doi: 10.3934/dcds.2008.22.885

[5]

Walter Allegretto, John R. Cannon, Yanping Lin. A parabolic integro-differential equation arising from thermoelastic contact. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 217-234. doi: 10.3934/dcds.1997.3.217

[6]

Narcisa Apreutesei, Nikolai Bessonov, Vitaly Volpert, Vitali Vougalter. Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 537-557. doi: 10.3934/dcdsb.2010.13.537

[7]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[8]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[9]

M. Grasselli, V. Pata. A reaction-diffusion equation with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1079-1088. doi: 10.3934/dcds.2006.15.1079

[10]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[11]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[12]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[13]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[14]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[15]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[16]

Lu Yang, Meihua Yang. Long-time behavior of stochastic reaction-diffusion equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2627-2650. doi: 10.3934/dcdsb.2017102

[17]

Zhaosheng Feng. Traveling waves to a reaction-diffusion equation. Conference Publications, 2007, 2007 (Special) : 382-390. doi: 10.3934/proc.2007.2007.382

[18]

Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085

[19]

Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391

[20]

Liang Zhang, Bingtuan Li. Traveling wave solutions in an integro-differential competition model. Discrete & Continuous Dynamical Systems - B, 2012, 17 (1) : 417-428. doi: 10.3934/dcdsb.2012.17.417

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]