September  2016, 36(9): 5201-5221. doi: 10.3934/dcds.2016026

Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing

1. 

Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan 610066, China

Received  August 2015 Revised  January 2016 Published  May 2016

In this paper, we study the global well-posedness for the Camassa-Holm(C-H) equation with a forcing in $H^1(\mathbb{R})$ by the characteristic method. Due to the forcing, many important properties to study the well-posedness of weak solutions do not inherit from the C-H equation without a forcing, such as conservation laws, integrability. By exploiting the balance law and some new estimates, we prove the existence and uniqueness of global weak solutions for the C-H equation with a forcing in $H^1(\mathbb{R})$.
Citation: Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026
References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137.  doi: 10.1007/BF00739423.  Google Scholar

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.   Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.   Google Scholar

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069.  doi: 10.1007/s00205-015-0849-y.  Google Scholar

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327.  doi: 10.3934/dcds.2015.35.3327.  Google Scholar

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().   Google Scholar

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75.  doi: 10.1016/S0167-2789(01)00298-6.  Google Scholar

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517.  doi: 10.1016/j.anihpc.2009.02.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31.  doi: 10.1007/978-3-540-71256-5_2.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

show all references

References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137.  doi: 10.1007/BF00739423.  Google Scholar

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.   Google Scholar

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999).  doi: 10.1088/0266-5611/15/1/001.  Google Scholar

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215.  doi: 10.1007/s00205-006-0010-z.  Google Scholar

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1.  doi: 10.1142/S0219530507000857.  Google Scholar

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.   Google Scholar

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069.  doi: 10.1007/s00205-015-0849-y.  Google Scholar

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327.  doi: 10.3934/dcds.2015.35.3327.  Google Scholar

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().   Google Scholar

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229.  doi: 10.1007/BF02392586.  Google Scholar

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197.  doi: 10.1088/0266-5611/22/6/017.  Google Scholar

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175.  doi: 10.1016/j.fluiddyn.2007.06.004.  Google Scholar

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165.  doi: 10.1007/s00205-008-0128-2.  Google Scholar

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949.  doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.  Google Scholar

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75.  doi: 10.1016/S0167-2789(01)00298-6.  Google Scholar

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603.  doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.  Google Scholar

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517.  doi: 10.1016/j.anihpc.2009.02.002.  Google Scholar

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010).  doi: 10.1090/gsm/019.  Google Scholar

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511.  doi: 10.1080/03605300601088674.  Google Scholar

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267.  doi: 10.1098/rsta.2007.2007.  Google Scholar

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31.  doi: 10.1007/978-3-540-71256-5_2.  Google Scholar

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411.  doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.  Google Scholar

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815.  doi: 10.1081/PDE-120016129.  Google Scholar

[1]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[2]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[3]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[8]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]