September  2016, 36(9): 5201-5221. doi: 10.3934/dcds.2016026

Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing

1. 

Department of Mathematics, Sichuan Normal University, Chengdu, Sichuan 610066, China

Received  August 2015 Revised  January 2016 Published  May 2016

In this paper, we study the global well-posedness for the Camassa-Holm(C-H) equation with a forcing in $H^1(\mathbb{R})$ by the characteristic method. Due to the forcing, many important properties to study the well-posedness of weak solutions do not inherit from the C-H equation without a forcing, such as conservation laws, integrability. By exploiting the balance law and some new estimates, we prove the existence and uniqueness of global weak solutions for the C-H equation with a forcing in $H^1(\mathbb{R})$.
Citation: Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026
References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137. doi: 10.1007/BF00739423.

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/1/001.

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z.

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857.

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069. doi: 10.1007/s00205-015-0849-y.

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327. doi: 10.3934/dcds.2015.35.3327.

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586.

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197. doi: 10.1088/0266-5611/22/6/017.

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175. doi: 10.1016/j.fluiddyn.2007.06.004.

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75. doi: 10.1016/S0167-2789(01)00298-6.

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517. doi: 10.1016/j.anihpc.2009.02.002.

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010). doi: 10.1090/gsm/019.

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X.

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674.

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267. doi: 10.1098/rsta.2007.2007.

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31. doi: 10.1007/978-3-540-71256-5_2.

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815. doi: 10.1081/PDE-120016129.

show all references

References:
[1]

M. S. Alber, R. Camassa, D. D. Holm and J. E. Marsden, The geometry of peaked solitons and billiard solutions of a class of integrable PDE's,, Lett. Math. Phys., 32 (1994), 137. doi: 10.1007/BF00739423.

[2]

N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces,, Studia Math., 57 (1976), 147.

[3]

R. Beals, D. H. Sattinger and J. Szmigielski, Multi-peakons and a theorem of Stieltjes,, Inverse Problems, 15 (1999). doi: 10.1088/0266-5611/15/1/001.

[4]

A. Bressan and A. Constantin, Global conservative solutions to the Camassa-Holm equation,, Arch. Rat. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z.

[5]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857.

[6]

A. Bressan, G. Chen and Q. Zhang, Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics,, Discr. Cont. Dyn. Syst., 35 (2015), 25.

[7]

A. Bressan, G. Chen and Q. Zhang, Unique conservative solutions to a variational wave equation,, Arch. Rat. Mech. Anal., 217 (2015), 1069. doi: 10.1007/s00205-015-0849-y.

[8]

G. Chen and Y. Shen, Existence and regularity of solutions in nonlinear wave equations,, Discr. Cont. Dyn. Syst., 35 (2015), 3327. doi: 10.3934/dcds.2015.35.3327.

[9]

G. Chen, Y. Shen and S. Zhu, Global well-posedness of weak solutions for a generalized water wave equation,, preprint., ().

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[11]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586.

[12]

A. Constantin, V. Gerdjikov and R. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197. doi: 10.1088/0266-5611/22/6/017.

[13]

A. Constantin and R. S. Johnson, Propagation of very long water waves, with vorticity, over variable depth, with applications to tsunamis,, Fluid Dynam. Res., 40 (2008), 175. doi: 10.1016/j.fluiddyn.2007.06.004.

[14]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[15]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[16]

A. Constantin and L. Molinet, Orbital stability of solitary waves for a shallow water equation,, Physica D, 157 (2001), 75. doi: 10.1016/S0167-2789(01)00298-6.

[17]

A. Constantin and W. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L.

[18]

K. E. Dika and L. Molinet, Stability of multipeakons,, Ann. Inst. H. Poincaré, 26 (2009), 1517. doi: 10.1016/j.anihpc.2009.02.002.

[19]

L. C. Evans, Partial Differential Equations,, Second edition, (2010). doi: 10.1090/gsm/019.

[20]

B. Fuchssteiner and A. S. Fokas, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Physica D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X.

[21]

H. Holden and X. Raynaud, Global conservative solutions of the Camassa-Holm equation- a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674.

[22]

R. I. Ivanov, Water waves and integrability,, Philos. Trans. Roy. Soc. Lond. Ser. A, 365 (2007), 2267. doi: 10.1098/rsta.2007.2007.

[23]

M. Lakshmanan, Integrable nonlinear wave equations and possible connections to tsunami dynamics,, in: Tsunami and Nonlinear Waves, (2007), 31. doi: 10.1007/978-3-540-71256-5_2.

[24]

Z. Xin and P. Zhang, On the weak solutions to a shallow water equation,, Comm. Pure Appl. Math., 53 (2000), 1411. doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5.

[25]

Z. Xin and P. Zhang, On the uniqueness and large time behavior of the weak solutions to a shallow water equation,, Comm. Partial Differential Equations, 27 (2002), 1815. doi: 10.1081/PDE-120016129.

[1]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[2]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[3]

Alberto Bressan, Geng Chen, Qingtian Zhang. Uniqueness of conservative solutions to the Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 25-42. doi: 10.3934/dcds.2015.35.25

[4]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[5]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[6]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[7]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[8]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[9]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[10]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[11]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[12]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[13]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[14]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[15]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[16]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[17]

Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304

[18]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[19]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[20]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]