-
Previous Article
Positive solutions to indefinite Neumann problems when the weight has positive average
- DCDS Home
- This Issue
- Next Article
Strong coincidence and overlap coincidence
1. | Institute of Mathematics, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 350-8571 |
References:
[1] |
S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226 (2011), 2855-2883.
doi: 10.1016/j.aim.2010.07.019. |
[2] |
S. Akiyama and J.-Y. Lee, Overlap coincidence to strong coincidence in substitution tiling dynamics, European J. Combin., 39 (2014), 233-243.
doi: 10.1016/j.ejc.2014.01.009. |
[3] |
P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8 (2001), 181-207. |
[4] |
M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130 (2002), 619-626. |
[5] |
M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math., 128 (2006), 1219-1282.
doi: 10.1353/ajm.2006.0037. |
[6] |
F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 221.
|
[7] |
S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math., 153 (2006), 129-155.
doi: 10.1007/BF02771781. |
[8] |
T. Kamae, A topological invariant of substitution minimal sets, J. Math. Soc. Japan, 24 (1972), 285-306.
doi: 10.2969/jmsj/02420285. |
[9] |
J. C. Lagarias and Y. Wang, Substitution Delone Sets, Discrete Comput. Geom., 29 (2003), 175-209.
doi: 10.1007/s00454-002-2820-6. |
[10] |
J. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Comm. Math. Phys., 179 (1996), 365-376.
doi: 10.1007/BF02102593. |
[11] |
J.-Y. Lee, Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.
doi: 10.1016/j.geomphys.2007.07.003. |
[12] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comput. Geom., 29 (2003), 525-560.
doi: 10.1007/s00454-003-0781-z. |
[13] |
J.-Y. Lee and B. Solomyak, Pisot family substitution tilings, discrete spectrum and the Meyer property, Discr. Conti. Dynam. Sys., 32 (2012), 935-959. |
[14] |
J. Luo, S. Akiyama and J. M. Thuswaldner, On the boundary connectedness of connected tiles, Math. Proc. Cambridge Phil. Soc., 137 (2004), 397-410.
doi: 10.1017/S0305004104007625. |
[15] |
K. Nakaishi, Pisot conjecture and Rauzy fractals,, preprint., ().
|
[16] |
M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987. |
[17] |
G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (1982), 147-178. |
[18] |
A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.), 118 (2009), p140. |
[19] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17 (1997), 695-738.
doi: 10.1017/S0143385797084988. |
show all references
References:
[1] |
S. Akiyama and J.-Y. Lee, Algorithm for determining pure pointedness of self-affine tilings, Adv. Math., 226 (2011), 2855-2883.
doi: 10.1016/j.aim.2010.07.019. |
[2] |
S. Akiyama and J.-Y. Lee, Overlap coincidence to strong coincidence in substitution tiling dynamics, European J. Combin., 39 (2014), 233-243.
doi: 10.1016/j.ejc.2014.01.009. |
[3] |
P. Arnoux and S. Ito, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8 (2001), 181-207. |
[4] |
M. Barge and B. Diamond, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France, 130 (2002), 619-626. |
[5] |
M. Barge and J. Kwapisz, Geometric theory of unimodular Pisot substitutions, Amer. J. Math., 128 (2006), 1219-1282.
doi: 10.1353/ajm.2006.0037. |
[6] |
F. M. Dekking, The spectrum of dynamical systems arising from substitutions of constant length,, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41 (): 221.
|
[7] |
S. Ito and H. Rao, Atomic surfaces, tilings and coincidence. I. Irreducible case, Israel J. Math., 153 (2006), 129-155.
doi: 10.1007/BF02771781. |
[8] |
T. Kamae, A topological invariant of substitution minimal sets, J. Math. Soc. Japan, 24 (1972), 285-306.
doi: 10.2969/jmsj/02420285. |
[9] |
J. C. Lagarias and Y. Wang, Substitution Delone Sets, Discrete Comput. Geom., 29 (2003), 175-209.
doi: 10.1007/s00454-002-2820-6. |
[10] |
J. Lagarias, Meyer's concept of quasicrystal and quasiregular sets, Comm. Math. Phys., 179 (1996), 365-376.
doi: 10.1007/BF02102593. |
[11] |
J.-Y. Lee, Substitution Delone sets with pure point spectrum are inter-model sets, J. Geom. Phys., 57 (2007), 2263-2285.
doi: 10.1016/j.geomphys.2007.07.003. |
[12] |
J.-Y. Lee, R. V. Moody and B. Solomyak, Consequences of pure point diffraction spectra for multiset substitution systems, Discrete Comput. Geom., 29 (2003), 525-560.
doi: 10.1007/s00454-003-0781-z. |
[13] |
J.-Y. Lee and B. Solomyak, Pisot family substitution tilings, discrete spectrum and the Meyer property, Discr. Conti. Dynam. Sys., 32 (2012), 935-959. |
[14] |
J. Luo, S. Akiyama and J. M. Thuswaldner, On the boundary connectedness of connected tiles, Math. Proc. Cambridge Phil. Soc., 137 (2004), 397-410.
doi: 10.1017/S0305004104007625. |
[15] |
K. Nakaishi, Pisot conjecture and Rauzy fractals,, preprint., ().
|
[16] |
M. Queffélec, Substitution Dynamical Systems-Spectral Analysis, Lecture Notes in Mathematics, 1294, Springer-Verlag, Berlin, 1987. |
[17] |
G. Rauzy, Nombres algébriques et substitutions, Bull. Soc. Math. France, 110 (1982), 147-178. |
[18] |
A. Siegel and J. Thuswaldner, Topological properties of Rauzy fractals, Mém. Soc. Math. Fr. (N.S.), 118 (2009), p140. |
[19] |
B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17 (1997), 695-738.
doi: 10.1017/S0143385797084988. |
[1] |
Jeong-Yup Lee, Boris Solomyak. Pisot family self-affine tilings, discrete spectrum, and the Meyer property. Discrete and Continuous Dynamical Systems, 2012, 32 (3) : 935-959. doi: 10.3934/dcds.2012.32.935 |
[2] |
Marcy Barge, Sonja Štimac, R. F. Williams. Pure discrete spectrum in substitution tiling spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 579-597. doi: 10.3934/dcds.2013.33.579 |
[3] |
Marcy Barge. Pure discrete spectrum for a class of one-dimensional substitution tiling systems. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1159-1173. doi: 10.3934/dcds.2016.36.1159 |
[4] |
Krzysztof Barański. Hausdorff dimension of self-affine limit sets with an invariant direction. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1015-1023. doi: 10.3934/dcds.2008.21.1015 |
[5] |
Jeanette Olli. Endomorphisms of Sturmian systems and the discrete chair substitution tiling system. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4173-4186. doi: 10.3934/dcds.2013.33.4173 |
[6] |
Rui Pacheco, Helder Vilarinho. Statistical stability for multi-substitution tiling spaces. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4579-4594. doi: 10.3934/dcds.2013.33.4579 |
[7] |
Younghwan Son. Substitutions, tiling dynamical systems and minimal self-joinings. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4855-4874. doi: 10.3934/dcds.2014.34.4855 |
[8] |
Tao Yu, Guohua Zhang, Ruifeng Zhang. Discrete spectrum for amenable group actions. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5871-5886. doi: 10.3934/dcds.2021099 |
[9] |
Christoph Bandt, Helena PeÑa. Polynomial approximation of self-similar measures and the spectrum of the transfer operator. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4611-4623. doi: 10.3934/dcds.2017198 |
[10] |
Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303 |
[11] |
Bassam Fayad, A. Windsor. A dichotomy between discrete and continuous spectrum for a class of special flows over rotations. Journal of Modern Dynamics, 2007, 1 (1) : 107-122. doi: 10.3934/jmd.2007.1.107 |
[12] |
Nikolai Edeko. On the isomorphism problem for non-minimal transformations with discrete spectrum. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6001-6021. doi: 10.3934/dcds.2019262 |
[13] |
Wen Huang, Zhiren Wang, Guohua Zhang. Möbius disjointness for topological models of ergodic systems with discrete spectrum. Journal of Modern Dynamics, 2019, 14: 277-290. doi: 10.3934/jmd.2019010 |
[14] |
Meiyue Jiang, Juncheng Wei. $2\pi$-Periodic self-similar solutions for the anisotropic affine curve shortening problem II. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 785-803. doi: 10.3934/dcds.2016.36.785 |
[15] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[16] |
Umberto Mosco, Maria Agostina Vivaldi. On a discrete self-organized-criticality finite time result. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 5079-5103. doi: 10.3934/dcds.2020212 |
[17] |
Delphine Boucher. Construction and number of self-dual skew codes over $\mathbb{F}_{p^2}$. Advances in Mathematics of Communications, 2016, 10 (4) : 765-795. doi: 10.3934/amc.2016040 |
[18] |
Grzegorz Graff, Jerzy Jezierski. Minimization of the number of periodic points for smooth self-maps of closed simply-connected 4-manifolds. Conference Publications, 2011, 2011 (Special) : 523-532. doi: 10.3934/proc.2011.2011.523 |
[19] |
Rafael De La Llave, A. Windsor. An application of topological multiple recurrence to tiling. Discrete and Continuous Dynamical Systems - S, 2009, 2 (2) : 315-324. doi: 10.3934/dcdss.2009.2.315 |
[20] |
Scott Schmieding, Rodrigo Treviño. Random substitution tilings and deviation phenomena. Discrete and Continuous Dynamical Systems, 2021, 41 (8) : 3869-3902. doi: 10.3934/dcds.2021020 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]