\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems

Abstract / Introduction Related Papers Cited by
  • In this paper we completely characterize trivial polynomial Hamiltonian isochronous centers of degrees $5$ and $7$. Precisely, we provide simple formulas, up to linear change of coordinates, for the Hamiltonians of the form $H = \left(f_1^2 + f_2^2 \right)/2$, where $f = (f_1, f_2): \mathbb{R}^2\to \mathbb{R}^2$ is a polynomial map with $\det D f = 1$, $f(0,0) = (0,0)$ and the degree of $f$ is $3$ or $4$.
    Mathematics Subject Classification: Primary: 34A34; Secondary: 34C25, 37C37, 14R15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    K. Baba and Y. Nakai, A generalization of Magnu's theorem, Osaka J. Math., 14 (1977), 403-409.

    [2]

    A. Cima, F. Mañosas and J. Villadelprat, Isochronicity for several classes of Hamiltonian systems, J. Differential Equations, 157 (1999), 373-413.doi: 10.1006/jdeq.1999.3635.

    [3]

    A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics 190. Birkhäuser Verlag, Basel, 2000.doi: 10.1007/978-3-0348-8440-2.

    [4]

    X. Jarque and J. Villadelprat, Nonexistence of isochronous centers in planar polynomial Hamiltonian systems of degree four, J. Differential Equations, 180 (2002), 334-373.doi: 10.1006/jdeq.2001.4065.

    [5]

    J. Llibre and V. G. Romanovski, Isochronicity and linearizability of planar polynomial Hamiltonian systems, J. Differential Equations, 259 (2015), 1649-1662.doi: 10.1016/j.jde.2015.03.009.

    [6]

    F. Mañosas and J. Villadelprat, Area-preserving normalizations for centers of planar Hamiltonian systems, J. Differential Equations, 179 (2002), 625-646.doi: 10.1006/jdeq.2001.4036.

    [7]

    T. T. Moh, On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math., 340 (1983), 140-212.

    [8]

    M. Sabatini, A connection between isochronous Hamiltonian centres and the Jacobian conjecture, Nonlinear Anal., 34 (1998), 829-838.doi: 10.1016/S0362-546X(97)00604-4.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(222) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return