-
Previous Article
Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations
- DCDS Home
- This Issue
-
Next Article
Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems
Restrictions on rotation sets for commuting torus homeomorphisms
1. | Rua do Matão 1010, IME-USP, São Paulo, SP, Brazil |
References:
[1] |
M. Benayon, Sobre Grupos Abelianos Irrotacionais de Homeomorfismos do Toro, Ph.D thesis, Universidade Federal Fluminense, 2013. |
[2] |
P. Le Calvez and F. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, preprint, arXiv:1503.09127v1. |
[3] |
P. Dávalos, On annular maps of the torus and sublinear diffusion, preprint, arXiv:1311.0046. |
[4] |
J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 107-115.
doi: 10.1090/S0002-9947-1989-0958891-1. |
[5] |
J. Franks and M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249.
doi: 10.1090/S0002-9939-1990-1021217-5. |
[6] |
A. Kocksard and A. Koropecki, Free curves and periodic points for torus homeomorphisms, Ergod. Th. Dynam. Sys., 28 (2008), 1895-1915.
doi: 10.1017/S0143385707001083. |
[7] |
A. Koropecki and F. Tal, Strictly toral dynamics, Invent math., 196 (2014), 339-381.
doi: 10.1007/s00222-013-0470-3. |
[8] |
J. Llibre and R. S. Mackay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergod. Th. Dynam. Sys., 11 (1991), 115-128.
doi: 10.1017/S0143385700006040. |
[9] |
M. Misiurewics and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc., 40 (1989), 490-506.
doi: 10.1112/jlms/s2-40.3.490. |
[10] |
K. Parkhe, Commuting homeomorphisms with non-commuting lifts, preprint, arXiv:1409.6422v2. |
show all references
References:
[1] |
M. Benayon, Sobre Grupos Abelianos Irrotacionais de Homeomorfismos do Toro, Ph.D thesis, Universidade Federal Fluminense, 2013. |
[2] |
P. Le Calvez and F. Tal, Forcing theory for transverse trajectories of surface homeomorphisms, preprint, arXiv:1503.09127v1. |
[3] |
P. Dávalos, On annular maps of the torus and sublinear diffusion, preprint, arXiv:1311.0046. |
[4] |
J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 107-115.
doi: 10.1090/S0002-9947-1989-0958891-1. |
[5] |
J. Franks and M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc., 109 (1990), 243-249.
doi: 10.1090/S0002-9939-1990-1021217-5. |
[6] |
A. Kocksard and A. Koropecki, Free curves and periodic points for torus homeomorphisms, Ergod. Th. Dynam. Sys., 28 (2008), 1895-1915.
doi: 10.1017/S0143385707001083. |
[7] |
A. Koropecki and F. Tal, Strictly toral dynamics, Invent math., 196 (2014), 339-381.
doi: 10.1007/s00222-013-0470-3. |
[8] |
J. Llibre and R. S. Mackay, Rotation vectors and entropy for homeomorphisms of the torus isotopic to the identity, Ergod. Th. Dynam. Sys., 11 (1991), 115-128.
doi: 10.1017/S0143385700006040. |
[9] |
M. Misiurewics and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc., 40 (1989), 490-506.
doi: 10.1112/jlms/s2-40.3.490. |
[10] |
K. Parkhe, Commuting homeomorphisms with non-commuting lifts, preprint, arXiv:1409.6422v2. |
[1] |
Abdelhamid Adouani, Habib Marzougui. Computation of rotation numbers for a class of PL-circle homeomorphisms. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3399-3419. doi: 10.3934/dcds.2012.32.3399 |
[2] |
Jorge Groisman. Expansive homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213 |
[3] |
Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609 |
[4] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete and Continuous Dynamical Systems, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[5] |
Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651 |
[6] |
Gioconda Moscariello, Antonia Passarelli di Napoli, Carlo Sbordone. Planar ACL-homeomorphisms : Critical points of their components. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1391-1397. doi: 10.3934/cpaa.2010.9.1391 |
[7] |
Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709 |
[8] |
Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511 |
[9] |
Rafael Ortega. Trivial dynamics for a class of analytic homeomorphisms of the plane. Discrete and Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 651-659. doi: 10.3934/dcdsb.2008.10.651 |
[10] |
Francisco J. López-Hernández. Dynamics of induced homeomorphisms of one-dimensional solenoids. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4243-4257. doi: 10.3934/dcds.2018185 |
[11] |
Keonhee Lee, Ngoc-Thach Nguyen, Yinong Yang. Topological stability and spectral decomposition for homeomorphisms on noncompact spaces. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2487-2503. doi: 10.3934/dcds.2018103 |
[12] |
Akhtam Dzhalilov, Isabelle Liousse, Dieter Mayer. Singular measures of piecewise smooth circle homeomorphisms with two break points. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 381-403. doi: 10.3934/dcds.2009.24.381 |
[13] |
Gernot Greschonig. Regularity of topological cocycles of a class of non-isometric minimal homeomorphisms. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 4305-4321. doi: 10.3934/dcds.2013.33.4305 |
[14] |
Mário Bessa, César M. Silva. Dense area-preserving homeomorphisms have zero Lyapunov exponents. Discrete and Continuous Dynamical Systems, 2012, 32 (4) : 1231-1244. doi: 10.3934/dcds.2012.32.1231 |
[15] |
Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200 |
[16] |
Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957 |
[17] |
Francisco R. Ruiz del Portal. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : 2379-2390. doi: 10.3934/dcdss.2019149 |
[18] |
Katja Polotzek, Kathrin Padberg-Gehle, Tobias Jäger. Set-oriented numerical computation of rotation sets. Journal of Computational Dynamics, 2017, 4 (1&2) : 119-141. doi: 10.3934/jcd.2017004 |
[19] |
Zhiming Li, Yujun Zhu. Entropies of commuting transformations on Hilbert spaces. Discrete and Continuous Dynamical Systems, 2020, 40 (10) : 5795-5814. doi: 10.3934/dcds.2020246 |
[20] |
Rémi Carles, Erwan Faou. Energy cascades for NLS on the torus. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2063-2077. doi: 10.3934/dcds.2012.32.2063 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]