\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem of the compressible Navier-Stokes-Smoluchowski equations in $\mathbb{R}^3$. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence theory of global solutions in $H^3$ to the stationary profile is established. Moreover, when the initial perturbation is bounded in $L^p$-norm with $1\leq p< \frac{6}{5}$, we obtain the optimal convergence rates of the solution in $L^q$-norm with $2\leq q\leq 6$ and its first order derivative in $L^2$-norm.
    Mathematics Subject Classification: Primary: 35Q30, 76N10, 46E35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.

    [2]

    J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system, Hyperbolic Problems: Theory, Numerics, Applications. AIMS Series on Applied Mathematics, 8 (2014), 301-308.

    [3]

    C. Baranger, L. Boudin, P. E. Jabin and S. Mancini, A modeling of biospray for the upper airways, CEMRACS 2004-mathematics and applications to biology and medicine, ESAIM Proc, 14 (2005), 41-47.

    [4]

    J. Ballew and K. Trivisa, Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.doi: 10.1016/j.na.2013.06.002.

    [5]

    S.Berres, R.Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.doi: 10.1137/S0036139902408163.

    [6]

    J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.doi: 10.1080/03605300500394389.

    [7]

    J. A. Carrillo, T. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: the bubbling regime, Nonlinear Anal, 74 (2011), 2778-2801.doi: 10.1016/j.na.2010.12.031.

    [8]

    T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003.

    [9]

    S. J. Ding, B. Y. Huang and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, preprint, 2015, http://202.116.32.252:8080/maths/uploadfile/2015/1212/20151212030124241.pdf.

    [10]

    R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17 (2007), 737-758.doi: 10.1142/S021820250700208X.

    [11]

    D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys, 53 (2012), 033706, 21pp.doi: 10.1063/1.3693979.

    [12]

    D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.doi: 10.1512/iumj.1995.44.2003.

    [13]

    N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.doi: 10.1007/s00220-004-1062-2.

    [14]

    S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations in Magnetohydrodynamics, Kyoto University, 1983.

    [15]

    T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$, Comm. Math. Phys., 200 (1999), 621-659.doi: 10.1007/s002200050543.

    [16]

    P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford University Press, Oxford, 1998.

    [17]

    A. Matsumura and T. Nishida, Initial boundary problems for the equations of motion of compressible viscous and heat-conducive fluids, Commun. Math. Phys., 89 (1983), 445-464.doi: 10.1007/BF01214738.

    [18]

    Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp.doi: 10.1063/1.4820446.

    [19]

    I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, International Journal of Multiphase Flow, 32 (2006), 344-364.doi: 10.1016/j.ijmultiphaseflow.2005.10.005.

    [20]

    Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential Equations, 253 (2012), 273-297.doi: 10.1016/j.jde.2012.03.006.

    [21]

    F. A. Williams, Combustion Theory, Benjamin Cummings Publ., 1985.

    [22]

    F. A. Williams, Spray combustion and atomization, Phys. Fluids, 1 (1958), 541-555.doi: 10.1063/1.1724379.

    [23]

    J. W. Zhang and J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 (2010), 835-850.doi: 10.4310/CMS.2010.v8.n4.a2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return