Advanced Search
Article Contents
Article Contents

Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations

Abstract Related Papers Cited by
  • This paper is concerned with the Cauchy problem of the compressible Navier-Stokes-Smoluchowski equations in $\mathbb{R}^3$. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence theory of global solutions in $H^3$ to the stationary profile is established. Moreover, when the initial perturbation is bounded in $L^p$-norm with $1\leq p< \frac{6}{5}$, we obtain the optimal convergence rates of the solution in $L^q$-norm with $2\leq q\leq 6$ and its first order derivative in $L^2$-norm.
    Mathematics Subject Classification: Primary: 35Q30, 76N10, 46E35.


    \begin{equation} \\ \end{equation}
  • [1]

    R. Adams, Sobolev Spaces, Academic Press, Now York, 1975.


    J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system, Hyperbolic Problems: Theory, Numerics, Applications. AIMS Series on Applied Mathematics, 8 (2014), 301-308.


    C. Baranger, L. Boudin, P. E. Jabin and S. Mancini, A modeling of biospray for the upper airways, CEMRACS 2004-mathematics and applications to biology and medicine, ESAIM Proc, 14 (2005), 41-47.


    J. Ballew and K. Trivisa, Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system, Nonlinear Analysis Series A: Theory, Methods Applications, 91 (2013), 1-19.doi: 10.1016/j.na.2013.06.002.


    S.Berres, R.Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), 41-80.doi: 10.1137/S0036139902408163.


    J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model, Commun. Partial Differ. Equ., 31 (2006), 1349-1379.doi: 10.1080/03605300500394389.


    J. A. Carrillo, T. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: the bubbling regime, Nonlinear Anal, 74 (2011), 2778-2801.doi: 10.1016/j.na.2010.12.031.


    T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, American Mathematical Society, 2003.


    S. J. Ding, B. Y. Huang and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum, preprint, 2015,


    R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces, Math. Models Methods Appl. Sci., 17 (2007), 737-758.doi: 10.1142/S021820250700208X.


    D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime, J. Math. Phys, 53 (2012), 033706, 21pp.doi: 10.1063/1.3693979.


    D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow, Indiana Univ. Math. J., 44 (1995), 603-676.doi: 10.1512/iumj.1995.44.2003.


    N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space, Comm. Math. Phys., 251 (2004), 365-376.doi: 10.1007/s00220-004-1062-2.


    S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations in Magnetohydrodynamics, Kyoto University, 1983.


    T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$, Comm. Math. Phys., 200 (1999), 621-659.doi: 10.1007/s002200050543.


    P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models, Oxford University Press, Oxford, 1998.


    A. Matsumura and T. Nishida, Initial boundary problems for the equations of motion of compressible viscous and heat-conducive fluids, Commun. Math. Phys., 89 (1983), 445-464.doi: 10.1007/BF01214738.


    Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime, J. Math. Phys., 54 (2013), 091501, 12pp.doi: 10.1063/1.4820446.


    I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, International Journal of Multiphase Flow, 32 (2006), 344-364.doi: 10.1016/j.ijmultiphaseflow.2005.10.005.


    Y. J. Wang, Decay of the Navier-Stokes-Poisson equations, J. Differential Equations, 253 (2012), 273-297.doi: 10.1016/j.jde.2012.03.006.


    F. A. Williams, Combustion Theory, Benjamin Cummings Publ., 1985.


    F. A. Williams, Spray combustion and atomization, Phys. Fluids, 1 (1958), 541-555.doi: 10.1063/1.1724379.


    J. W. Zhang and J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics, Commun. Math. Sci., 8 (2010), 835-850.doi: 10.4310/CMS.2010.v8.n4.a2.

  • 加载中

Article Metrics

HTML views() PDF downloads(234) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint