October  2016, 36(10): 5287-5307. doi: 10.3934/dcds.2016032

Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations

1. 

Department of Mathematics, South China University of Technology, Guangzhou 510641

2. 

Department of Mathematics, South China Normal University, Guangzhou, Guangdong 510631

3. 

College of Science, University of Shanghai for Science and Technology, Shanghai 200093

Received  September 2015 Revised  March 2016 Published  July 2016

This paper is concerned with the Cauchy problem of the compressible Navier-Stokes-Smoluchowski equations in $\mathbb{R}^3$. Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces, the existence theory of global solutions in $H^3$ to the stationary profile is established. Moreover, when the initial perturbation is bounded in $L^p$-norm with $1\leq p< \frac{6}{5}$, we obtain the optimal convergence rates of the solution in $L^q$-norm with $2\leq q\leq 6$ and its first order derivative in $L^2$-norm.
Citation: Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032
References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system,, Hyperbolic Problems: Theory, 8 (2014), 301.   Google Scholar

[3]

C. Baranger, L. Boudin, P. E. Jabin and S. Mancini, A modeling of biospray for the upper airways,, CEMRACS 2004-mathematics and applications to biology and medicine, 14 (2005), 41.   Google Scholar

[4]

J. Ballew and K. Trivisa, Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system,, Nonlinear Analysis Series A: Theory, 91 (2013), 1.  doi: 10.1016/j.na.2013.06.002.  Google Scholar

[5]

S.Berres, R.Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression,, SIAM J. Appl. Math., 64 (2003), 41.  doi: 10.1137/S0036139902408163.  Google Scholar

[6]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Commun. Partial Differ. Equ., 31 (2006), 1349.  doi: 10.1080/03605300500394389.  Google Scholar

[7]

J. A. Carrillo, T. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: the bubbling regime,, Nonlinear Anal, 74 (2011), 2778.  doi: 10.1016/j.na.2010.12.031.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics,, American Mathematical Society, (2003).   Google Scholar

[9]

S. J. Ding, B. Y. Huang and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum,, preprint, (2015).   Google Scholar

[10]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces,, Math. Models Methods Appl. Sci., 17 (2007), 737.  doi: 10.1142/S021820250700208X.  Google Scholar

[11]

D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime,, J. Math. Phys, 53 (2012).  doi: 10.1063/1.3693979.  Google Scholar

[12]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. J., 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space,, Comm. Math. Phys., 251 (2004), 365.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[14]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations in Magnetohydrodynamics,, Kyoto University, (1983).   Google Scholar

[15]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,, Oxford University Press, (1998).   Google Scholar

[17]

A. Matsumura and T. Nishida, Initial boundary problems for the equations of motion of compressible viscous and heat-conducive fluids,, Commun. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[18]

Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4820446.  Google Scholar

[19]

I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow,, International Journal of Multiphase Flow, 32 (2006), 344.  doi: 10.1016/j.ijmultiphaseflow.2005.10.005.  Google Scholar

[20]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, J. Differential Equations, 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[21]

F. A. Williams, Combustion Theory,, Benjamin Cummings Publ., (1985).   Google Scholar

[22]

F. A. Williams, Spray combustion and atomization,, Phys. Fluids, 1 (1958), 541.  doi: 10.1063/1.1724379.  Google Scholar

[23]

J. W. Zhang and J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics,, Commun. Math. Sci., 8 (2010), 835.  doi: 10.4310/CMS.2010.v8.n4.a2.  Google Scholar

show all references

References:
[1]

R. Adams, Sobolev Spaces,, Academic Press, (1975).   Google Scholar

[2]

J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system,, Hyperbolic Problems: Theory, 8 (2014), 301.   Google Scholar

[3]

C. Baranger, L. Boudin, P. E. Jabin and S. Mancini, A modeling of biospray for the upper airways,, CEMRACS 2004-mathematics and applications to biology and medicine, 14 (2005), 41.   Google Scholar

[4]

J. Ballew and K. Trivisa, Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski system,, Nonlinear Analysis Series A: Theory, 91 (2013), 1.  doi: 10.1016/j.na.2013.06.002.  Google Scholar

[5]

S.Berres, R.Bürger, K. H. Karlsen and E. M. Tory, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression,, SIAM J. Appl. Math., 64 (2003), 41.  doi: 10.1137/S0036139902408163.  Google Scholar

[6]

J. A. Carrillo and T. Goudon, Stability and asymptotic analysis of a fluid-particle interaction model,, Commun. Partial Differ. Equ., 31 (2006), 1349.  doi: 10.1080/03605300500394389.  Google Scholar

[7]

J. A. Carrillo, T. Karper and K. Trivisa, On the dynamics of a fluid-particle interaction model: the bubbling regime,, Nonlinear Anal, 74 (2011), 2778.  doi: 10.1016/j.na.2010.12.031.  Google Scholar

[8]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics,, American Mathematical Society, (2003).   Google Scholar

[9]

S. J. Ding, B. Y. Huang and H. Y. Wen, Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum,, preprint, (2015).   Google Scholar

[10]

R. J. Duan, S. Ukai, T. Yang and H. J. Zhao, Optimal convergence rates for the compressible Navier-Stokes equations with potential forces,, Math. Models Methods Appl. Sci., 17 (2007), 737.  doi: 10.1142/S021820250700208X.  Google Scholar

[11]

D. Y. Fang, R. Z. Zi and T. Zhang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime,, J. Math. Phys, 53 (2012).  doi: 10.1063/1.3693979.  Google Scholar

[12]

D. Hoff and K. Zumbrun, Multi-dimensional diffusion waves for the Navier-Stokes equations of compressible flow,, Indiana Univ. Math. J., 44 (1995), 603.  doi: 10.1512/iumj.1995.44.2003.  Google Scholar

[13]

N. Ju, Existence and uniqueness of the solution to the dissipative 2D quasi-geostrophic equations in the Sobolev space,, Comm. Math. Phys., 251 (2004), 365.  doi: 10.1007/s00220-004-1062-2.  Google Scholar

[14]

S. Kawashima, Systems of a Hyperbolic-Parabolic Composite Type, with Applications to the Equations in Magnetohydrodynamics,, Kyoto University, (1983).   Google Scholar

[15]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621.  doi: 10.1007/s002200050543.  Google Scholar

[16]

P. L. Lions, Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models,, Oxford University Press, (1998).   Google Scholar

[17]

A. Matsumura and T. Nishida, Initial boundary problems for the equations of motion of compressible viscous and heat-conducive fluids,, Commun. Math. Phys., 89 (1983), 445.  doi: 10.1007/BF01214738.  Google Scholar

[18]

Y. K. Song, H. J. Yuan, Y. Chen and Z. D. Guo, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime,, J. Math. Phys., 54 (2013).  doi: 10.1063/1.4820446.  Google Scholar

[19]

I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow,, International Journal of Multiphase Flow, 32 (2006), 344.  doi: 10.1016/j.ijmultiphaseflow.2005.10.005.  Google Scholar

[20]

Y. J. Wang, Decay of the Navier-Stokes-Poisson equations,, J. Differential Equations, 253 (2012), 273.  doi: 10.1016/j.jde.2012.03.006.  Google Scholar

[21]

F. A. Williams, Combustion Theory,, Benjamin Cummings Publ., (1985).   Google Scholar

[22]

F. A. Williams, Spray combustion and atomization,, Phys. Fluids, 1 (1958), 541.  doi: 10.1063/1.1724379.  Google Scholar

[23]

J. W. Zhang and J. N. Zhao, Some decay estimates of solutions for the 3-D compressible isentropic magnetohydrodynamics,, Commun. Math. Sci., 8 (2010), 835.  doi: 10.4310/CMS.2010.v8.n4.a2.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Karoline Disser. Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 321-330. doi: 10.3934/dcdss.2020326

[6]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[7]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[8]

Dorothee Knees, Chiara Zanini. Existence of parameterized BV-solutions for rate-independent systems with discontinuous loads. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 121-149. doi: 10.3934/dcdss.2020332

[9]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[12]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[20]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (106)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]