• Previous Article
    Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations
October  2016, 36(10): 5309-5322. doi: 10.3934/dcds.2016033

Partial regularity of solutions to the fractional Navier-Stokes equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China

Received  September 2015 Revised  December 2015 Published  July 2016

We study the partial regularity of suitable weak solutions to the Navier-Stokes equations with fractional dissipation $\sqrt{-\Delta}^s$ in the critical case of $s=\frac{3}{2}$. We show that the two dimensional Hausdorff measure of space-time singular set of these solutions is zero.
Citation: Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033
References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39. doi: 10.4310/DPDE.2014.v11.n1.a2. Google Scholar

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785. doi: 10.1007/s00220-007-0259-6. Google Scholar

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53. doi: 10.4310/DPDE.2014.v11.n1.a3. Google Scholar

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606. doi: 10.1016/j.jfa.2014.08.001. Google Scholar

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589. doi: 10.1007/s00220-008-0689-9. Google Scholar

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z. Google Scholar

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356. doi: 10.1007/s000210050015. Google Scholar

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193. Google Scholar

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969). Google Scholar

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127. Google Scholar

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535. doi: 10.2140/pjm.1976.66.535. Google Scholar

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97. doi: 10.1007/BF01626512. Google Scholar

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41. doi: 10.1007/BF01609467. Google Scholar

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1. doi: 10.1007/BF01942692. Google Scholar

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455. doi: 10.1007/s00220-014-2149-z. Google Scholar

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057. doi: 10.1007/s00220-015-2289-9. Google Scholar

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361. doi: 10.2140/apde.2009.2.361. Google Scholar

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977). Google Scholar

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221. doi: 10.4310/CAG.1999.v7.n2.a1. Google Scholar

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000). doi: 10.1007/BFb0103908. Google Scholar

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753. doi: 10.1007/s00030-007-6001-4. Google Scholar

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224. doi: 10.1016/j.jde.2013.10.014. Google Scholar

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284. doi: 10.1016/j.jde.2003.07.007. Google Scholar

show all references

References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39. doi: 10.4310/DPDE.2014.v11.n1.a2. Google Scholar

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604. Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785. doi: 10.1007/s00220-007-0259-6. Google Scholar

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53. doi: 10.4310/DPDE.2014.v11.n1.a3. Google Scholar

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606. doi: 10.1016/j.jfa.2014.08.001. Google Scholar

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213. Google Scholar

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589. doi: 10.1007/s00220-008-0689-9. Google Scholar

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z. Google Scholar

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356. doi: 10.1007/s000210050015. Google Scholar

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193. Google Scholar

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A. Google Scholar

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969). Google Scholar

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127. Google Scholar

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535. doi: 10.2140/pjm.1976.66.535. Google Scholar

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97. doi: 10.1007/BF01626512. Google Scholar

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41. doi: 10.1007/BF01609467. Google Scholar

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1. doi: 10.1007/BF01942692. Google Scholar

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970). Google Scholar

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455. doi: 10.1007/s00220-014-2149-z. Google Scholar

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057. doi: 10.1007/s00220-015-2289-9. Google Scholar

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361. doi: 10.2140/apde.2009.2.361. Google Scholar

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977). Google Scholar

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221. doi: 10.4310/CAG.1999.v7.n2.a1. Google Scholar

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000). doi: 10.1007/BFb0103908. Google Scholar

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753. doi: 10.1007/s00030-007-6001-4. Google Scholar

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224. doi: 10.1016/j.jde.2013.10.014. Google Scholar

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284. doi: 10.1016/j.jde.2003.07.007. Google Scholar

[1]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[2]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[3]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[4]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[5]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[6]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[7]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[8]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[11]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[12]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[13]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[14]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[15]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[16]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[17]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[18]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

[19]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[20]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]