• Previous Article
    Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations
  • DCDS Home
  • This Issue
  • Next Article
    Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros
October  2016, 36(10): 5309-5322. doi: 10.3934/dcds.2016033

Partial regularity of solutions to the fractional Navier-Stokes equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China

Received  September 2015 Revised  December 2015 Published  July 2016

We study the partial regularity of suitable weak solutions to the Navier-Stokes equations with fractional dissipation $\sqrt{-\Delta}^s$ in the critical case of $s=\frac{3}{2}$. We show that the two dimensional Hausdorff measure of space-time singular set of these solutions is zero.
Citation: Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033
References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39. doi: 10.4310/DPDE.2014.v11.n1.a2.

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604.

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306.

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785. doi: 10.1007/s00220-007-0259-6.

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53. doi: 10.4310/DPDE.2014.v11.n1.a3.

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606. doi: 10.1016/j.jfa.2014.08.001.

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589. doi: 10.1007/s00220-008-0689-9.

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z.

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356. doi: 10.1007/s000210050015.

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193.

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969).

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127.

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535. doi: 10.2140/pjm.1976.66.535.

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97. doi: 10.1007/BF01626512.

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41. doi: 10.1007/BF01609467.

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1. doi: 10.1007/BF01942692.

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455. doi: 10.1007/s00220-014-2149-z.

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057. doi: 10.1007/s00220-015-2289-9.

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361. doi: 10.2140/apde.2009.2.361.

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221. doi: 10.4310/CAG.1999.v7.n2.a1.

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000). doi: 10.1007/BFb0103908.

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753. doi: 10.1007/s00030-007-6001-4.

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224. doi: 10.1016/j.jde.2013.10.014.

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284. doi: 10.1016/j.jde.2003.07.007.

show all references

References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39. doi: 10.4310/DPDE.2014.v11.n1.a2.

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771. doi: 10.1002/cpa.3160350604.

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306.

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785. doi: 10.1007/s00220-007-0259-6.

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53. doi: 10.4310/DPDE.2014.v11.n1.a3.

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606. doi: 10.1016/j.jfa.2014.08.001.

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589. doi: 10.1007/s00220-008-0689-9.

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355. doi: 10.1007/s00039-002-8250-z.

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356. doi: 10.1007/s000210050015.

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193.

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969).

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127.

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535. doi: 10.2140/pjm.1976.66.535.

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97. doi: 10.1007/BF01626512.

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41. doi: 10.1007/BF01609467.

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1. doi: 10.1007/BF01942692.

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455. doi: 10.1007/s00220-014-2149-z.

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057. doi: 10.1007/s00220-015-2289-9.

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361. doi: 10.2140/apde.2009.2.361.

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221. doi: 10.4310/CAG.1999.v7.n2.a1.

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000). doi: 10.1007/BFb0103908.

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753. doi: 10.1007/s00030-007-6001-4.

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224. doi: 10.1016/j.jde.2013.10.014.

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284. doi: 10.1016/j.jde.2003.07.007.

[1]

Francesca Crispo, Paolo Maremonti. A remark on the partial regularity of a suitable weak solution to the Navier-Stokes Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1283-1294. doi: 10.3934/dcds.2017053

[2]

Jiří Neustupa. A note on local interior regularity of a suitable weak solution to the Navier--Stokes problem. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1391-1400. doi: 10.3934/dcdss.2013.6.1391

[3]

Igor Kukavica. On partial regularity for the Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 717-728. doi: 10.3934/dcds.2008.21.717

[4]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[5]

Jan W. Cholewa, Tomasz Dlotko. Fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 2967-2988. doi: 10.3934/dcdsb.2017149

[6]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

[7]

Reinhard Farwig, Paul Felix Riechwald. Regularity criteria for weak solutions of the Navier-Stokes system in general unbounded domains. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 157-172. doi: 10.3934/dcdss.2016.9.157

[8]

Bo-Qing Dong, Juan Song. Global regularity and asymptotic behavior of modified Navier-Stokes equations with fractional dissipation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 57-79. doi: 10.3934/dcds.2012.32.57

[9]

Vittorino Pata. On the regularity of solutions to the Navier-Stokes equations. Communications on Pure & Applied Analysis, 2012, 11 (2) : 747-761. doi: 10.3934/cpaa.2012.11.747

[10]

Igor Kukavica. On regularity for the Navier-Stokes equations in Morrey spaces. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1319-1328. doi: 10.3934/dcds.2010.26.1319

[11]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[12]

Wenjing Song, Ganshan Yang. The regularization of solution for the coupled Navier-Stokes and Maxwell equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2113-2127. doi: 10.3934/dcdss.2016087

[13]

Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471

[14]

Jishan Fan, Yasuhide Fukumoto, Yong Zhou. Logarithmically improved regularity criteria for the generalized Navier-Stokes and related equations. Kinetic & Related Models, 2013, 6 (3) : 545-556. doi: 10.3934/krm.2013.6.545

[15]

Chongsheng Cao. Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1141-1151. doi: 10.3934/dcds.2010.26.1141

[16]

Keyan Wang. On global regularity of incompressible Navier-Stokes equations in $\mathbf R^3$. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1067-1072. doi: 10.3934/cpaa.2009.8.1067

[17]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[18]

Igor Kukavica, Mohammed Ziane. Regularity of the Navier-Stokes equation in a thin periodic domain with large data. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 67-86. doi: 10.3934/dcds.2006.16.67

[19]

Hui Chen, Daoyuan Fang, Ting Zhang. Regularity of 3D axisymmetric Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (4) : 1923-1939. doi: 10.3934/dcds.2017081

[20]

Zijin Li, Xinghong Pan. Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1333-1350. doi: 10.3934/cpaa.2019064

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]