• Previous Article
    Bifurcation and one-sign solutions of the $p$-Laplacian involving a nonlinearity with zeros
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations
October  2016, 36(10): 5309-5322. doi: 10.3934/dcds.2016033

Partial regularity of solutions to the fractional Navier-Stokes equations

1. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China, China

Received  September 2015 Revised  December 2015 Published  July 2016

We study the partial regularity of suitable weak solutions to the Navier-Stokes equations with fractional dissipation $\sqrt{-\Delta}^s$ in the critical case of $s=\frac{3}{2}$. We show that the two dimensional Hausdorff measure of space-time singular set of these solutions is zero.
Citation: Yukang Chen, Changhua Wei. Partial regularity of solutions to the fractional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5309-5322. doi: 10.3934/dcds.2016033
References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39.  doi: 10.4310/DPDE.2014.v11.n1.a2.  Google Scholar

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771.  doi: 10.1002/cpa.3160350604.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785.  doi: 10.1007/s00220-007-0259-6.  Google Scholar

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53.  doi: 10.4310/DPDE.2014.v11.n1.a3.  Google Scholar

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606.  doi: 10.1016/j.jfa.2014.08.001.  Google Scholar

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589.  doi: 10.1007/s00220-008-0689-9.  Google Scholar

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356.  doi: 10.1007/s000210050015.  Google Scholar

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193.   Google Scholar

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969).   Google Scholar

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127.   Google Scholar

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535.  doi: 10.2140/pjm.1976.66.535.  Google Scholar

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97.  doi: 10.1007/BF01626512.  Google Scholar

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41.  doi: 10.1007/BF01609467.  Google Scholar

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1.  doi: 10.1007/BF01942692.  Google Scholar

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455.  doi: 10.1007/s00220-014-2149-z.  Google Scholar

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057.  doi: 10.1007/s00220-015-2289-9.  Google Scholar

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).   Google Scholar

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221.  doi: 10.4310/CAG.1999.v7.n2.a1.  Google Scholar

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000).  doi: 10.1007/BFb0103908.  Google Scholar

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753.  doi: 10.1007/s00030-007-6001-4.  Google Scholar

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224.  doi: 10.1016/j.jde.2013.10.014.  Google Scholar

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

show all references

References:
[1]

D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation,, Dyn. Partial Differ. Equ., 11 (2014), 39.  doi: 10.4310/DPDE.2014.v11.n1.a2.  Google Scholar

[2]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Commun. Pure Appl. Math., 35 (1982), 771.  doi: 10.1002/cpa.3160350604.  Google Scholar

[3]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Commun. Partial Differ. Equ., 32 (2007), 1245.  doi: 10.1080/03605300600987306.  Google Scholar

[4]

H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time,, Commun. Math. Phys., 273 (2007), 785.  doi: 10.1007/s00220-007-0259-6.  Google Scholar

[5]

H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations,, Dyn. Partial Differ. Equ., 11 (2014), 53.  doi: 10.4310/DPDE.2014.v11.n1.a3.  Google Scholar

[6]

H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations,, J. Funct. Anal., 267 (2014), 2606.  doi: 10.1016/j.jfa.2014.08.001.  Google Scholar

[7]

E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,, Math. Nachr., 4 (1951), 213.   Google Scholar

[8]

T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations,, Commun. Math. Phys., 287 (2009), 589.  doi: 10.1007/s00220-008-0689-9.  Google Scholar

[9]

N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation,, Geom. Funct. Anal., 12 (2002), 355.  doi: 10.1007/s00039-002-8250-z.  Google Scholar

[10]

O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations,, J. Math. Fluid Mech., 1 (1999), 356.  doi: 10.1007/s000210050015.  Google Scholar

[11]

J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace,, Acta Math., 63 (1933), 193.   Google Scholar

[12]

F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem,, Commun. Pure Appl. Math., 51 (1998), 241.  doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.  Google Scholar

[13]

J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires,, Donud, (1969).   Google Scholar

[14]

S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes,, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127.   Google Scholar

[15]

V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations,, Pacific J. Math., 66 (1976), 535.  doi: 10.2140/pjm.1976.66.535.  Google Scholar

[16]

V. Scheffer, Hausdoff measure and the Navier-Stokes equations,, Commun. Math. Phys., 55 (1977), 97.  doi: 10.1007/BF01626512.  Google Scholar

[17]

V. Scheffer, The Navier-Stokes equations in space dimension four,, Commun. Math. Phys., 61 (1978), 41.  doi: 10.1007/BF01609467.  Google Scholar

[18]

V. Scheffer, The Navier-Stokes equations on a bounded domain,, Commun. Math. Phys., 73 (1980), 1.  doi: 10.1007/BF01942692.  Google Scholar

[19]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions,, Princeton University Press, (1970).   Google Scholar

[20]

L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 334 (2015), 1455.  doi: 10.1007/s00220-014-2149-z.  Google Scholar

[21]

L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations,, Commun. Math. Phys., 335 (2015), 1057.  doi: 10.1007/s00220-015-2289-9.  Google Scholar

[22]

T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation,, Anal.PDE., 2 (2009), 361.  doi: 10.2140/apde.2009.2.361.  Google Scholar

[23]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, North-Holland, (1977).   Google Scholar

[24]

G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations,, Commun. Anal. Geom., 7 (1999), 221.  doi: 10.4310/CAG.1999.v7.n2.a1.  Google Scholar

[25]

B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces,, Springer, (2000).  doi: 10.1007/BFb0103908.  Google Scholar

[26]

A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations,, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753.  doi: 10.1007/s00030-007-6001-4.  Google Scholar

[27]

Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations,, J. Differ. Equ., 256 (2014), 1224.  doi: 10.1016/j.jde.2013.10.014.  Google Scholar

[28]

J. Wu, Generalized MHD equations,, J. Differ. Equ., 195 (2003), 284.  doi: 10.1016/j.jde.2003.07.007.  Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[5]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[6]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[10]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[19]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[20]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]