\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Partial regularity of solutions to the fractional Navier-Stokes equations

Abstract Related Papers Cited by
  • We study the partial regularity of suitable weak solutions to the Navier-Stokes equations with fractional dissipation $\sqrt{-\Delta}^s$ in the critical case of $s=\frac{3}{2}$. We show that the two dimensional Hausdorff measure of space-time singular set of these solutions is zero.
    Mathematics Subject Classification: Primary: 76D03, 76D05; Secondary: 35Q30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Barbato, F. Morandin and M. Romito, Global regularity for a logarithmically supercritical hyperdissipative dyadic equation, Dyn. Partial Differ. Equ., 11 (2014), 39-52.doi: 10.4310/DPDE.2014.v11.n1.a2.

    [2]

    L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Commun. Pure Appl. Math., 35 (1982), 771-831.doi: 10.1002/cpa.3160350604.

    [3]

    L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., 32 (2007), 1245-1260.doi: 10.1080/03605300600987306.

    [4]

    H. Dong and D. Du, Partial regularity of solutions to the four-dimensional Navier-Stokes equations at the first blow-up time, Commun. Math. Phys., 273 (2007), 785-801.doi: 10.1007/s00220-007-0259-6.

    [5]

    H. Dong and X. Gu, Partial regularity of solutions to the four-dimensional Navier-Stokes equations, Dyn. Partial Differ. Equ., 11 (2014), 53-69.doi: 10.4310/DPDE.2014.v11.n1.a3.

    [6]

    H. Dong and X. Gu, Boundary partial regularity for the high dimensional Navier-Stokes equations, J. Funct. Anal., 267 (2014), 2606-2637.doi: 10.1016/j.jfa.2014.08.001.

    [7]

    E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4 (1951), 213-231.

    [8]

    T. Y. Hou and Z. Lei, On the partial regularity of a 3D model of the Navier-Stokes equations, Commun. Math. Phys., 287 (2009), 589-612.doi: 10.1007/s00220-008-0689-9.

    [9]

    N. H. Katz and N. Pavlović, A cheap Caffarelli-Kohn-Nirenberg inequality for the Navier-Stokes equation with hyper-dissipation, Geom. Funct. Anal., 12 (2002), 355-379.doi: 10.1007/s00039-002-8250-z.

    [10]

    O. Ladyzhenskaya and G. A. Seregin, On the partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387.doi: 10.1007/s000210050015.

    [11]

    J. Leray, Essai sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1933), 193-248.

    [12]

    F. Lin, A new proof the Caffarelli-Kohn-Nirenberg theorem, Commun. Pure Appl. Math., 51 (1998), 241-257.doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A.

    [13]

    J. L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires, Donud, Paris, 1969.

    [14]

    S. A. Molchanov and E. Ostrovski, Symmetric stable processes as traces of degenerate diffusion processes, (Russian)Teor. Verojatnost. i Primenen, 14 (1969), 127-130.

    [15]

    V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific J. Math., 66 (1976), 535-552.doi: 10.2140/pjm.1976.66.535.

    [16]

    V. Scheffer, Hausdoff measure and the Navier-Stokes equations, Commun. Math. Phys., 55 (1977), 97-112.doi: 10.1007/BF01626512.

    [17]

    V. Scheffer, The Navier-Stokes equations in space dimension four, Commun. Math. Phys., 61 (1978), 41-68.doi: 10.1007/BF01609467.

    [18]

    V. Scheffer, The Navier-Stokes equations on a bounded domain, Commun. Math. Phys., 73 (1980), 1-42.doi: 10.1007/BF01942692.

    [19]

    E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.

    [20]

    L. Tang and Y. Yu, Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Commun. Math. Phys., 334 (2015), 1455-1482.doi: 10.1007/s00220-014-2149-z.

    [21]

    L. Tang and Y. Yu, Erratum to: Partial regularity of suitable weak solutions to the fractional Navier-Stokes equations, Commun. Math. Phys., 335 (2015), 1057-1063.doi: 10.1007/s00220-015-2289-9.

    [22]

    T. Tao, Global regularity for a logarithmically supercritical hyperdissipative Navier-Stokes equation, Anal.PDE., 2 (2009), 361-366.doi: 10.2140/apde.2009.2.361.

    [23]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, New York, 1977.

    [24]

    G. Tian and Z. Xin, Gradient estimation on Navier-Stokes equations, Commun. Anal. Geom., 7 (1999), 221-257.doi: 10.4310/CAG.1999.v7.n2.a1.

    [25]

    B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer, New York, 2000.doi: 10.1007/BFb0103908.

    [26]

    A. F. Vasseur, A new proof of partial regularity of solutions to Navier-Stokes equations, NoDEA Nonlinear Differ. Equ. Appl., 14 (2007), 753-785.doi: 10.1007/s00030-007-6001-4.

    [27]

    Y. Wang and G. Wu, A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier-Stokes equations, J. Differ. Equ., 256 (2014), 1224-1249.doi: 10.1016/j.jde.2013.10.014.

    [28]

    J. Wu, Generalized MHD equations, J. Differ. Equ., 195 (2003), 284-312.doi: 10.1016/j.jde.2003.07.007.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(286) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return