\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Periodic and eventually periodic points of affine infra-nilmanifold endomorphisms

Abstract Related Papers Cited by
  • In this paper, we study the periodic and eventually periodic points of affine infra-nilmanifold endomorphisms. On the one hand, we give a sufficient condition for a point of the infra-nilmanifold to be (eventually) periodic. In this way we show that if an affine infra-nilmanifold endomorphism has a periodic point, then its set of periodic points forms a dense subset of the manifold. On the other hand, we deduce a necessary condition for eventually periodic points from which a full description of the set of eventually periodic points follows for an arbitrary affine infra-nilmanifold endomorphism.
    Mathematics Subject Classification: Primary: 37C25; Secondary: 20F18, 20F34, 22E25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. V. Anosov, Geodesic flow on closed Riemannian manifolds with negative curvature, Trudy Mat. Inst. Steklov., 90 (1967), 209pp.

    [2]

    K. Dekimpe, Almost-Bieberbach Groups: Affine and Polynomial Structures, Lect. Notes in Math., 1639, Springer-Verlag, 1996.

    [3]

    K. Dekimpe, What an infra-nilmanifold endomorphism really should be..., Topological Methods in Nonlinear Analysis, 40 (2012), 111-136.

    [4]

    K. Dekimpe and J. Deré, Expanding maps and non-trivial self-covers on infra-nilmanifolds, Topological Methods in Nonlinear Analysis, 47 (2016), 347-368.

    [5]

    R. L. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley Studies in Nonlinearity $2^{nd}$ edition, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989, Studies in Nonlinearity. Westview Press, Boulder, CO, 2003.

    [6]

    M. Gromov, Groups of polynomial growth and expanding maps, Institut des Hautes Études Scientifiques, 53 (1981), 53-73.

    [7]

    K. Y. Ha, H. J. Kim and J. B. Lee, Eventually periodic points of infra-nil endomorphisms, Fixed Point Theory Appl., (2010), Art. ID 721736, 15pp.

    [8]

    K. B. Lee, Maps on infra-nilmanifolds, Pacific J. Math., 168 (1995), 157-166.doi: 10.2140/pjm.1995.168.157.

    [9]

    A. Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422-429.doi: 10.2307/2373551.

    [10]

    J. R. Munkres, Topology: A First Course, $2^{nd}$ edition, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1975.

    [11]

    S. E. Newhouse, On codimension one Anosov diffeomorphisms, Amer. J. Math, 92 (1970), 761-770.doi: 10.2307/2373372.

    [12]

    D. Segal, Polycyclic Groups, Cambridge University Press, 1983.doi: 10.1017/CBO9780511565953.

    [13]

    M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math, 91 (1969), 175-199.doi: 10.2307/2373276.

    [14]

    S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.doi: 10.1090/S0002-9904-1967-11798-1.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(222) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return