October  2016, 36(10): 5369-5386. doi: 10.3934/dcds.2016036

Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow

1. 

College of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. 

Department of Mathematics, University of Iowa, Iowa City, IA 52242

Received  August 2015 Revised  April 2016 Published  July 2016

A time-dependent Stokes fluid flow problem is studied with nonlinear boundary conditions described by the Clarke subdifferential. We present equivalent weak formulations of the problem, one of them in the form of a hemivariational inequality. The existence of a solution is shown through a limiting procedure based on temporally semi-discrete approximations. Uniqueness of the solution and its continuous dependence on data are also established. Finally, we present a result on the existence of a solution to an optimal control problem for the hemivariational inequality.
Citation: Changjie Fang, Weimin Han. Well-posedness and optimal control of a hemivariational inequality for nonstationary Stokes fluid flow. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5369-5386. doi: 10.3934/dcds.2016036
References:
[1]

N. Ahmed, Optimal control of hydrodynamic flow with possible application to artificial heart,, Dynam. Systems Appl., 1 (1992), 103. Google Scholar

[2]

J. Aubin and A. Cellina, Differential Inclusions,, Springer Verlag, (1984). Google Scholar

[3]

E. Balder, Necessary and sufficient conditions for $L^1$-strong-weak lower semicontinuity of integral functionals,, Nonlinear Anal., 11 (1987), 1399. doi: 10.1016/0362-546X(87)90092-7. Google Scholar

[4]

V. Barbu, Optimal Control of Variational Inequalities,, Pitman, (1983). Google Scholar

[5]

K. Bartosz, X. Cheng, P. Kalita, Y. Yu and C. Zheng, Rothe method for parabolic variational-hemivariational inequalities,, J. Math. Anal. Appl., 423 (2015), 841. doi: 10.1016/j.jmaa.2014.09.078. Google Scholar

[6]

C. Carstensen and J. Gwinner, A theory of discretisation for nonlinear evolution inequalities applied to parabolic Signorini problems,, Ann. Mat. Pura Appl., 177 (1999), 363. doi: 10.1007/BF02505918. Google Scholar

[7]

L. Cesari, Optimization: Theory and Applications,, Springer, (1983). Google Scholar

[8]

F. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). Google Scholar

[9]

Z. Denkowski and S. Migórski, Optimal shape design problems for a class of systems described by hemivariational inequalities,, J. Global Optim., 12 (1998), 37. doi: 10.1023/A:1008299801203. Google Scholar

[10]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory,, Kluwer Academic, (2003). Google Scholar

[11]

Z. Denkowski, S. Migórski and N. Papageorgiou, An Introduction to Nonlinear Analysis: Applications,, Kluwer Academic, (2003). Google Scholar

[12]

J. Djoko, On the time approximation of the Stokes equations with nonlinear slip boundary conditions,, Int. J. Numer. Anal.\ Model. - B, 11 (2014), 34. Google Scholar

[13]

H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type,, J. Comput. Appl. Math., 149 (2002), 57. doi: 10.1016/S0377-0427(02)00520-4. Google Scholar

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer, (1986). Google Scholar

[15]

W. Han, S. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems,, SIAM J. Math. Anal., 46 (2014), 3891. doi: 10.1137/140963248. Google Scholar

[16]

J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,, Kluwer Academic Publishers, (1999). Google Scholar

[17]

J. Haslinger and P. Panagiotopoulos, Optimal control of systems governed by hemivariational inequalities. Existence and approximation results,, Nonlinear Analysis: Theory, 24 (1995), 105. doi: 10.1016/0362-546X(93)E0022-U. Google Scholar

[18]

P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type,, Int. J. Numer. Anal. Model., 10 (2013), 445. Google Scholar

[19]

Y. Li and K. Li, Penalty finite element method for Stokes problem with nonlinear slip boundary conditions,, Appl. Math. Comput., 204 (2008), 216. doi: 10.1016/j.amc.2008.06.035. Google Scholar

[20]

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer, (1971). Google Scholar

[21]

M. Miettinen and J. Haslinger, Approximation of optimal control problems of hemivariational inequalities,, Numer. Funct. Anal. and Optimiz., 13 (1992), 43. doi: 10.1080/01630569208816460. Google Scholar

[22]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Systems - B, 6 (2006), 1339. doi: 10.3934/dcdsb.2006.6.1339. Google Scholar

[23]

S. Migórski, A note on optimal control problem for a hemivariational inequality modeling fluid flow,, Discrete and Continuous Dynam. Systems - S, (2013), 545. doi: 10.3934/proc.2013.2013.545. Google Scholar

[24]

S. Migórski and A. Ochal, Optimal control of parabolic hemivariational inequalities,, J. Global Optim., 17 (2000), 285. doi: 10.1023/A:1026555014562. Google Scholar

[25]

S. Migórski and A. Ochal, Hemivariational inequalities for stationary Navier-Stokes equations,, J. Math. Anal. Appl., 306 (2005), 197. doi: 10.1016/j.jmaa.2004.12.033. Google Scholar

[26]

S. Migórski and A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach,, SIAM J. Math. Anal., 41 (2009), 1415. doi: 10.1137/080733231. Google Scholar

[27]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems,, Advances in Mechanics and Mathematics 26, (2013). Google Scholar

[28]

H. Nagase, On an application of Rothe method to nonlinear parabolic variational inequalities,, Funkcial. Ekvac., 32 (1989), 273. Google Scholar

[29]

Z. Naniewicz and P. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications,, Dekker, (1995). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[30]

P. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993). Google Scholar

[31]

T. Roubicek, Nonlinear Partial Differential Equations with Applications,, Birkhäuser Verlag, (2005). Google Scholar

[32]

Y. Shang, New stabilized finite element method for time-dependent incompressible flow problems,, Int. J. Numer. Meth. Fluids , 62 (2010), 166. doi: 10.1002/fld.2010. Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, North-Holland, (1979). Google Scholar

[34]

D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems,, Lecture Notes in Math., 1459 (1990). Google Scholar

[35]

F. Tröltzsch, Optimal Control of Partial Differential Equations,, American Mathematical Society, (2010). Google Scholar

show all references

References:
[1]

N. Ahmed, Optimal control of hydrodynamic flow with possible application to artificial heart,, Dynam. Systems Appl., 1 (1992), 103. Google Scholar

[2]

J. Aubin and A. Cellina, Differential Inclusions,, Springer Verlag, (1984). Google Scholar

[3]

E. Balder, Necessary and sufficient conditions for $L^1$-strong-weak lower semicontinuity of integral functionals,, Nonlinear Anal., 11 (1987), 1399. doi: 10.1016/0362-546X(87)90092-7. Google Scholar

[4]

V. Barbu, Optimal Control of Variational Inequalities,, Pitman, (1983). Google Scholar

[5]

K. Bartosz, X. Cheng, P. Kalita, Y. Yu and C. Zheng, Rothe method for parabolic variational-hemivariational inequalities,, J. Math. Anal. Appl., 423 (2015), 841. doi: 10.1016/j.jmaa.2014.09.078. Google Scholar

[6]

C. Carstensen and J. Gwinner, A theory of discretisation for nonlinear evolution inequalities applied to parabolic Signorini problems,, Ann. Mat. Pura Appl., 177 (1999), 363. doi: 10.1007/BF02505918. Google Scholar

[7]

L. Cesari, Optimization: Theory and Applications,, Springer, (1983). Google Scholar

[8]

F. Clarke, Optimization and Nonsmooth Analysis,, Wiley, (1983). Google Scholar

[9]

Z. Denkowski and S. Migórski, Optimal shape design problems for a class of systems described by hemivariational inequalities,, J. Global Optim., 12 (1998), 37. doi: 10.1023/A:1008299801203. Google Scholar

[10]

Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory,, Kluwer Academic, (2003). Google Scholar

[11]

Z. Denkowski, S. Migórski and N. Papageorgiou, An Introduction to Nonlinear Analysis: Applications,, Kluwer Academic, (2003). Google Scholar

[12]

J. Djoko, On the time approximation of the Stokes equations with nonlinear slip boundary conditions,, Int. J. Numer. Anal.\ Model. - B, 11 (2014), 34. Google Scholar

[13]

H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type,, J. Comput. Appl. Math., 149 (2002), 57. doi: 10.1016/S0377-0427(02)00520-4. Google Scholar

[14]

V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms,, Springer, (1986). Google Scholar

[15]

W. Han, S. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems,, SIAM J. Math. Anal., 46 (2014), 3891. doi: 10.1137/140963248. Google Scholar

[16]

J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications,, Kluwer Academic Publishers, (1999). Google Scholar

[17]

J. Haslinger and P. Panagiotopoulos, Optimal control of systems governed by hemivariational inequalities. Existence and approximation results,, Nonlinear Analysis: Theory, 24 (1995), 105. doi: 10.1016/0362-546X(93)E0022-U. Google Scholar

[18]

P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type,, Int. J. Numer. Anal. Model., 10 (2013), 445. Google Scholar

[19]

Y. Li and K. Li, Penalty finite element method for Stokes problem with nonlinear slip boundary conditions,, Appl. Math. Comput., 204 (2008), 216. doi: 10.1016/j.amc.2008.06.035. Google Scholar

[20]

J. Lions, Optimal Control of Systems Governed by Partial Differential Equations,, Springer, (1971). Google Scholar

[21]

M. Miettinen and J. Haslinger, Approximation of optimal control problems of hemivariational inequalities,, Numer. Funct. Anal. and Optimiz., 13 (1992), 43. doi: 10.1080/01630569208816460. Google Scholar

[22]

S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity,, Discrete Continuous Dynam. Systems - B, 6 (2006), 1339. doi: 10.3934/dcdsb.2006.6.1339. Google Scholar

[23]

S. Migórski, A note on optimal control problem for a hemivariational inequality modeling fluid flow,, Discrete and Continuous Dynam. Systems - S, (2013), 545. doi: 10.3934/proc.2013.2013.545. Google Scholar

[24]

S. Migórski and A. Ochal, Optimal control of parabolic hemivariational inequalities,, J. Global Optim., 17 (2000), 285. doi: 10.1023/A:1026555014562. Google Scholar

[25]

S. Migórski and A. Ochal, Hemivariational inequalities for stationary Navier-Stokes equations,, J. Math. Anal. Appl., 306 (2005), 197. doi: 10.1016/j.jmaa.2004.12.033. Google Scholar

[26]

S. Migórski and A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach,, SIAM J. Math. Anal., 41 (2009), 1415. doi: 10.1137/080733231. Google Scholar

[27]

S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems,, Advances in Mechanics and Mathematics 26, (2013). Google Scholar

[28]

H. Nagase, On an application of Rothe method to nonlinear parabolic variational inequalities,, Funkcial. Ekvac., 32 (1989), 273. Google Scholar

[29]

Z. Naniewicz and P. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications,, Dekker, (1995). doi: 10.1007/978-1-4612-0873-0. Google Scholar

[30]

P. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering,, Springer, (1993). Google Scholar

[31]

T. Roubicek, Nonlinear Partial Differential Equations with Applications,, Birkhäuser Verlag, (2005). Google Scholar

[32]

Y. Shang, New stabilized finite element method for time-dependent incompressible flow problems,, Int. J. Numer. Meth. Fluids , 62 (2010), 166. doi: 10.1002/fld.2010. Google Scholar

[33]

R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis,, North-Holland, (1979). Google Scholar

[34]

D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems,, Lecture Notes in Math., 1459 (1990). Google Scholar

[35]

F. Tröltzsch, Optimal Control of Partial Differential Equations,, American Mathematical Society, (2010). Google Scholar

[1]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[2]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[3]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[4]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. I. Well-posedness and convergence of the method of lines. Inverse Problems & Imaging, 2013, 7 (2) : 307-340. doi: 10.3934/ipi.2013.7.307

[5]

Stanisław Migórski. A note on optimal control problem for a hemivariational inequality modeling fluid flow. Conference Publications, 2013, 2013 (special) : 545-554. doi: 10.3934/proc.2013.2013.545

[6]

Leszek Gasiński. Optimal control problem of Bolza-type for evolution hemivariational inequality. Conference Publications, 2003, 2003 (Special) : 320-326. doi: 10.3934/proc.2003.2003.320

[7]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[8]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[9]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[10]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[11]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

[12]

Thomas Y. Hou, Congming Li. Global well-posedness of the viscous Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 1-12. doi: 10.3934/dcds.2005.12.1

[13]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[14]

Jian-Wen Peng, Xin-Min Yang. Levitin-Polyak well-posedness of a system of generalized vector variational inequality problems. Journal of Industrial & Management Optimization, 2015, 11 (3) : 701-714. doi: 10.3934/jimo.2015.11.701

[15]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[16]

Rong Hu, Ya-Ping Fang, Nan-Jing Huang. Levitin-Polyak well-posedness for variational inequalities and for optimization problems with variational inequality constraints. Journal of Industrial & Management Optimization, 2010, 6 (3) : 465-481. doi: 10.3934/jimo.2010.6.465

[17]

Chao Deng, Xiaohua Yao. Well-posedness and ill-posedness for the 3D generalized Navier-Stokes equations in $\dot{F}^{-\alpha,r}_{\frac{3}{\alpha-1}}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 437-459. doi: 10.3934/dcds.2014.34.437

[18]

Hongjun Gao, Chengfeng Sun. Well-posedness of stochastic primitive equations with multiplicative noise in three dimensions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3053-3073. doi: 10.3934/dcdsb.2016087

[19]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[20]

Junxiong Jia, Jigen Peng, Kexue Li. Well-posedness of abstract distributed-order fractional diffusion equations. Communications on Pure & Applied Analysis, 2014, 13 (2) : 605-621. doi: 10.3934/cpaa.2014.13.605

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]