Citation: |
[1] |
N. Ahmed, Optimal control of hydrodynamic flow with possible application to artificial heart, Dynam. Systems Appl., 1 (1992), 103-119. |
[2] |
J. Aubin and A. Cellina, Differential Inclusions, Springer Verlag, Berlin, 1984. |
[3] |
E. Balder, Necessary and sufficient conditions for $L^1$-strong-weak lower semicontinuity of integral functionals, Nonlinear Anal., 11 (1987), 1399-1404.doi: 10.1016/0362-546X(87)90092-7. |
[4] |
V. Barbu, Optimal Control of Variational Inequalities, Pitman, London, 1983. |
[5] |
K. Bartosz, X. Cheng, P. Kalita, Y. Yu and C. Zheng, Rothe method for parabolic variational-hemivariational inequalities, J. Math. Anal. Appl., 423 (2015), 841-862.doi: 10.1016/j.jmaa.2014.09.078. |
[6] |
C. Carstensen and J. Gwinner, A theory of discretisation for nonlinear evolution inequalities applied to parabolic Signorini problems, Ann. Mat. Pura Appl., 177 (1999), 363-394.doi: 10.1007/BF02505918. |
[7] |
L. Cesari, Optimization: Theory and Applications, Springer, Berlin, 1983. |
[8] |
F. Clarke, Optimization and Nonsmooth Analysis, Wiley, Interscience, New York, 1983. |
[9] |
Z. Denkowski and S. Migórski, Optimal shape design problems for a class of systems described by hemivariational inequalities, J. Global Optim., 12 (1998), 37-59.doi: 10.1023/A:1008299801203. |
[10] |
Z. Denkowski, S. Migórski and N. S. Papageorgiou, An Introduction to Nonlinear Analysis: Theory, Kluwer Academic, Plenum Publishers, Boston, Dordrecht, London, New York, 2003. |
[11] |
Z. Denkowski, S. Migórski and N. Papageorgiou, An Introduction to Nonlinear Analysis: Applications, Kluwer Academic, Plenum Publishers, Boston, Dordrecht, London, New York, 2003. |
[12] |
J. Djoko, On the time approximation of the Stokes equations with nonlinear slip boundary conditions, Int. J. Numer. Anal.\ Model. - B, 11 (2014), 34-53. |
[13] |
H. Fujita, A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math., 149 (2002), 57-69.doi: 10.1016/S0377-0427(02)00520-4. |
[14] |
V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer, Berlin, 1986. |
[15] |
W. Han, S. Migórski and M. Sofonea, A class of variational-hemivariational inequalities with applications to frictional contact problems, SIAM J. Math. Anal., 46 (2014), 3891-3912.doi: 10.1137/140963248. |
[16] |
J. Haslinger, M. Miettinen and P. Panagiotopoulos, Finite Element Method for Hemivariational Inequalities: Theory, Methods and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1999. |
[17] |
J. Haslinger and P. Panagiotopoulos, Optimal control of systems governed by hemivariational inequalities. Existence and approximation results, Nonlinear Analysis: Theory, Methods, and Applications, 24 (1995), 105-119.doi: 10.1016/0362-546X(93)E0022-U. |
[18] |
P. Kalita, Convergence of Rothe scheme for hemivariational inequalities of parabolic type, Int. J. Numer. Anal. Model., 10 (2013), 445-465. |
[19] |
Y. Li and K. Li, Penalty finite element method for Stokes problem with nonlinear slip boundary conditions, Appl. Math. Comput., 204 (2008), 216-226.doi: 10.1016/j.amc.2008.06.035. |
[20] |
J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer, Heidelberg, Berlin, 1971. |
[21] |
M. Miettinen and J. Haslinger, Approximation of optimal control problems of hemivariational inequalities, Numer. Funct. Anal. and Optimiz., 13 (1992), 43-68.doi: 10.1080/01630569208816460. |
[22] |
S. Migórski, Hemivariational inequality for a frictional contact problem in elasto-piezoelectricity, Discrete Continuous Dynam. Systems - B, 6 (2006), 1339-1356.doi: 10.3934/dcdsb.2006.6.1339. |
[23] |
S. Migórski, A note on optimal control problem for a hemivariational inequality modeling fluid flow, Discrete and Continuous Dynam. Systems - S, (2013), 545-554.doi: 10.3934/proc.2013.2013.545. |
[24] |
S. Migórski and A. Ochal, Optimal control of parabolic hemivariational inequalities, J. Global Optim., 17 (2000), 285-300.doi: 10.1023/A:1026555014562. |
[25] |
S. Migórski and A. Ochal, Hemivariational inequalities for stationary Navier-Stokes equations, J. Math. Anal. Appl., 306 (2005), 197-217.doi: 10.1016/j.jmaa.2004.12.033. |
[26] |
S. Migórski and A. Ochal, Quasi-static hemivariational inequality via vanishing acceleration approach, SIAM J. Math. Anal., 41 (2009), 1415-1435.doi: 10.1137/080733231. |
[27] |
S. Migórski, A. Ochal and M. Sofonea, Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems, Advances in Mechanics and Mathematics 26, Springer, New York, 2013. |
[28] |
H. Nagase, On an application of Rothe method to nonlinear parabolic variational inequalities, Funkcial. Ekvac., 32 (1989), 273-299. |
[29] |
Z. Naniewicz and P. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Dekker, New York, 1995.doi: 10.1007/978-1-4612-0873-0. |
[30] |
P. Panagiotopoulos, Hemivariational Inequalities, Applications in Mechanics and Engineering, Springer, Berlin, 1993. |
[31] |
T. Roubicek, Nonlinear Partial Differential Equations with Applications, Birkhäuser Verlag, Basel, Boston, Berlin, 2005. |
[32] |
Y. Shang, New stabilized finite element method for time-dependent incompressible flow problems, Int. J. Numer. Meth. Fluids , 62 (2010), 166-187.doi: 10.1002/fld.2010. |
[33] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam, 1979. |
[34] |
D. Tiba, Optimal Control of Nonsmooth Distributed Parameter Systems, Lecture Notes in Math., 1459, Springer, Berlin, 1990. |
[35] |
F. Tröltzsch, Optimal Control of Partial Differential Equations, American Mathematical Society, Providence, Rhode Island, 2010. |