October  2016, 36(10): 5387-5400. doi: 10.3934/dcds.2016037

On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation

1. 

College of Mathematics and Systems Science, Xinjiang University, Urumqi 830046, China

2. 

Center for Computational Geosciences, School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049

Received  October 2015 Revised  March 2016 Published  July 2016

In this article, we provide the uniform $H^2$-regularity results with respect to $t$ of the solution and its time derivatives for the 2D Cahn-Hilliard equation. Based on sharp a priori estimates for the solution of problem under the assumption on the initial value, we show that the $H^2$-regularity of the solution and its first and second order time derivatives only depend on $\epsilon^{-1}$.
Citation: Xinlong Feng, Yinnian He. On uniform in time $H^2$-regularity of the solution for the 2D Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5387-5400. doi: 10.3934/dcds.2016037
References:
[1]

R. A. Adams, Sobolev Space,, Academic press, (1975). Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. F. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal., 128 (1994), 165. doi: 10.1007/BF00375025. Google Scholar

[3]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275. doi: 10.1137/0719018. Google Scholar

[4]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750. doi: 10.1137/0723049. Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar

[6]

Q. Du and R. A. Nicolaides, Numerical analysia of a continum model of phase transition,, SIAM J. Numer. Anal., 28 (1991), 1310. doi: 10.1137/0728069. Google Scholar

[7]

C. M. Elliott and S. M. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803. Google Scholar

[8]

C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation,, Math. Comp., 58 (1992), 603. doi: 10.1090/S0025-5718-1992-1122067-1. Google Scholar

[9]

X. B. Feng, Y. N. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids,, Math. Comp., 76 (2007), 539. doi: 10.1090/S0025-5718-06-01915-6. Google Scholar

[10]

X. B. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation,, Numer. Math., 99 (2004), 47. doi: 10.1007/s00211-004-0546-5. Google Scholar

[11]

X. L. Feng, T. Tang and J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods,, SIAM J. Sci. Comput., 37 (2015). doi: 10.1137/130928662. Google Scholar

[12]

X. L. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models,, East Asian J. Appl. Math., 3 (2013), 59. Google Scholar

[13]

Y. N. He and Y. X. Liu, Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation,, Numer. Meth. Part Differ. Equ., 24 (2008), 1485. doi: 10.1002/num.20328. Google Scholar

[14]

Y. N. He, Y. X. Liu and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation,, Appl. Numer. Math., 57 (2007), 616. doi: 10.1016/j.apnum.2006.07.026. Google Scholar

[15]

J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Volume 41 of Springer Series in Computational Mathematics. Springer, (2011). doi: 10.1007/978-3-540-71041-7. Google Scholar

[16]

J. Shen and X. F. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,, Discret. Contin. Dyn. Syst., 28 (2010), 1669. doi: 10.3934/dcds.2010.28.1669. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Space,, Academic press, (1975). Google Scholar

[2]

N. D. Alikakos, P. W. Bates and X. F. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model,, Arch. Rational Mech. Anal., 128 (1994), 165. doi: 10.1007/BF00375025. Google Scholar

[3]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second-order error estimates for spatial discretization,, SIAM J. Numer. Anal., 19 (1982), 275. doi: 10.1137/0719018. Google Scholar

[4]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750. doi: 10.1137/0723049. Google Scholar

[5]

J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I: Interfacial free energy,, J. Chem. Phys., 28 (1958), 258. Google Scholar

[6]

Q. Du and R. A. Nicolaides, Numerical analysia of a continum model of phase transition,, SIAM J. Numer. Anal., 28 (1991), 1310. doi: 10.1137/0728069. Google Scholar

[7]

C. M. Elliott and S. M. Zheng, On the Cahn-Hilliard equation,, Arch. Rational Mech. Anal., 96 (1986), 339. doi: 10.1007/BF00251803. Google Scholar

[8]

C. M. Elliott and S. Larsson, Error estimates with smooth and nonsmooth data for a finite element method for the Cahn-Hilliard equation,, Math. Comp., 58 (1992), 603. doi: 10.1090/S0025-5718-1992-1122067-1. Google Scholar

[9]

X. B. Feng, Y. N. He and C. Liu, Analysis of finite element approximations of a phase field model for two-phase fluids,, Math. Comp., 76 (2007), 539. doi: 10.1090/S0025-5718-06-01915-6. Google Scholar

[10]

X. B. Feng and A. Prohl, Error analysis of a mixed finite element method for the Cahn-Hilliard equation,, Numer. Math., 99 (2004), 47. doi: 10.1007/s00211-004-0546-5. Google Scholar

[11]

X. L. Feng, T. Tang and J. Yang, Long time numerical simulations for phase-field problems using p-adaptive spectral deferred correction methods,, SIAM J. Sci. Comput., 37 (2015). doi: 10.1137/130928662. Google Scholar

[12]

X. L. Feng, T. Tang and J. Yang, Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models,, East Asian J. Appl. Math., 3 (2013), 59. Google Scholar

[13]

Y. N. He and Y. X. Liu, Stability and convergence of the spectral Galerkin method for the Cahn-Hilliard equation,, Numer. Meth. Part Differ. Equ., 24 (2008), 1485. doi: 10.1002/num.20328. Google Scholar

[14]

Y. N. He, Y. X. Liu and T. Tang, On large time-stepping methods for the Cahn-Hilliard equation,, Appl. Numer. Math., 57 (2007), 616. doi: 10.1016/j.apnum.2006.07.026. Google Scholar

[15]

J. Shen, T. Tang and L. L. Wang, Spectral Methods: Algorithms, Analysis and Applications,, Volume 41 of Springer Series in Computational Mathematics. Springer, (2011). doi: 10.1007/978-3-540-71041-7. Google Scholar

[16]

J. Shen and X. F. Yang, Numerical approximations of Allen-Cahn and Cahn-Hilliard equations,, Discret. Contin. Dyn. Syst., 28 (2010), 1669. doi: 10.3934/dcds.2010.28.1669. Google Scholar

[1]

Georgia Karali, Yuko Nagase. On the existence of solution for a Cahn-Hilliard/Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 127-137. doi: 10.3934/dcdss.2014.7.127

[2]

Dimitra Antonopoulou, Georgia Karali. Existence of solution for a generalized stochastic Cahn-Hilliard equation on convex domains. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 31-55. doi: 10.3934/dcdsb.2011.16.31

[3]

Annalisa Iuorio, Stefano Melchionna. Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3765-3788. doi: 10.3934/dcds.2018163

[4]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[5]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[6]

Desheng Li, Xuewei Ju. On dynamical behavior of viscous Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2207-2221. doi: 10.3934/dcds.2012.32.2207

[7]

Laurence Cherfils, Alain Miranville, Sergey Zelik. On a generalized Cahn-Hilliard equation with biological applications. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2013-2026. doi: 10.3934/dcdsb.2014.19.2013

[8]

Álvaro Hernández, Michał Kowalczyk. Rotationally symmetric solutions to the Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 801-827. doi: 10.3934/dcds.2017033

[9]

Fausto Cavalli, Giovanni Naldi. A Wasserstein approach to the numerical solution of the one-dimensional Cahn-Hilliard equation. Kinetic & Related Models, 2010, 3 (1) : 123-142. doi: 10.3934/krm.2010.3.123

[10]

Jan Prüss, Vicente Vergara, Rico Zacher. Well-posedness and long-time behaviour for the non-isothermal Cahn-Hilliard equation with memory. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 625-647. doi: 10.3934/dcds.2010.26.625

[11]

Maurizio Grasselli, Nicolas Lecoq, Morgan Pierre. A long-time stable fully discrete approximation of the Cahn-Hilliard equation with inertial term. Conference Publications, 2011, 2011 (Special) : 543-552. doi: 10.3934/proc.2011.2011.543

[12]

Sergey P. Degtyarev. On Fourier multipliers in function spaces with partial Hölder condition and their application to the linearized Cahn-Hilliard equation with dynamic boundary conditions. Evolution Equations & Control Theory, 2015, 4 (4) : 391-429. doi: 10.3934/eect.2015.4.391

[13]

L. Chupin. Existence result for a mixture of non Newtonian flows with stress diffusion using the Cahn-Hilliard formulation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 45-68. doi: 10.3934/dcdsb.2003.3.45

[14]

Dimitra Antonopoulou, Georgia Karali, Georgios T. Kossioris. Asymptotics for a generalized Cahn-Hilliard equation with forcing terms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1037-1054. doi: 10.3934/dcds.2011.30.1037

[15]

Alain Miranville, Sergey Zelik. The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 275-310. doi: 10.3934/dcds.2010.28.275

[16]

S. Maier-Paape, Ulrich Miller. Connecting continua and curves of equilibria of the Cahn-Hilliard equation on the square. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1137-1153. doi: 10.3934/dcds.2006.15.1137

[17]

Laurence Cherfils, Madalina Petcu, Morgan Pierre. A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1511-1533. doi: 10.3934/dcds.2010.27.1511

[18]

Amy Novick-Cohen, Andrey Shishkov. Upper bounds for coarsening for the degenerate Cahn-Hilliard equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 251-272. doi: 10.3934/dcds.2009.25.251

[19]

Gianni Gilardi, A. Miranville, Giulio Schimperna. On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (3) : 881-912. doi: 10.3934/cpaa.2009.8.881

[20]

Irena Pawłow, Wojciech M. Zajączkowski. Regular weak solutions to 3-D Cahn-Hilliard system in elastic solids. Conference Publications, 2007, 2007 (Special) : 824-833. doi: 10.3934/proc.2007.2007.824

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]