-
Previous Article
On one dimensional quantum Zakharov system
- DCDS Home
- This Issue
-
Next Article
Bifurcation of rotating patches from Kirchhoff vortices
Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type
1. | Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing 100124, China, China |
2. | Department of Mathematics, Hong Kong Baptist University, Hong Kong |
References:
[1] |
A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529.
doi: 10.1093/imanum/22.4.529. |
[2] |
A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229.
doi: 10.1007/s10543-006-0055-2. |
[3] |
A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.
doi: 10.1016/S0168-9274(97)00026-3. |
[4] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003).
doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[5] |
H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511543234. |
[6] |
H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783.
doi: 10.1093/imanum/21.4.783. |
[7] |
H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944.
doi: 10.1137/090771922. |
[8] |
H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693.
doi: 10.1007/s10543-010-0285-1. |
[9] |
C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001). Google Scholar |
[10] |
M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455.
doi: 10.1090/S0025-5718-1981-0606506-0. |
[11] |
K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488.
doi: 10.1016/j.amc.2006.07.147. |
[12] |
Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664.
doi: 10.1137/110824632. |
[13] |
A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1.
doi: 10.1017/S0956792500000966. |
[14] |
T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233.
doi: 10.1007/s002110050470. |
[15] |
D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574.
doi: 10.4208/jcm.1107-m3433. |
[16] |
Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.
doi: 10.1016/0377-0427(95)00222-7. |
[17] |
N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374.
doi: 10.1023/A:1022351309662. |
[18] |
X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280.
|
[19] |
X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186. Google Scholar |
show all references
References:
[1] |
A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529.
doi: 10.1093/imanum/22.4.529. |
[2] |
A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229.
doi: 10.1007/s10543-006-0055-2. |
[3] |
A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.
doi: 10.1016/S0168-9274(97)00026-3. |
[4] |
A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003).
doi: 10.1093/acprof:oso/9780198506546.001.0001. |
[5] |
H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004).
doi: 10.1017/CBO9780511543234. |
[6] |
H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783.
doi: 10.1093/imanum/21.4.783. |
[7] |
H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944.
doi: 10.1137/090771922. |
[8] |
H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693.
doi: 10.1007/s10543-010-0285-1. |
[9] |
C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001). Google Scholar |
[10] |
M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455.
doi: 10.1090/S0025-5718-1981-0606506-0. |
[11] |
K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488.
doi: 10.1016/j.amc.2006.07.147. |
[12] |
Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664.
doi: 10.1137/110824632. |
[13] |
A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1.
doi: 10.1017/S0956792500000966. |
[14] |
T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233.
doi: 10.1007/s002110050470. |
[15] |
D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574.
doi: 10.4208/jcm.1107-m3433. |
[16] |
Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.
doi: 10.1016/0377-0427(95)00222-7. |
[17] |
N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374.
doi: 10.1023/A:1022351309662. |
[18] |
X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280.
|
[19] |
X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186. Google Scholar |
[1] |
Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392 |
[2] |
Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305 |
[3] |
Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078 |
[4] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[5] |
Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321 |
[6] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020107 |
[7] |
John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044 |
[8] |
Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042 |
[9] |
Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097 |
[10] |
Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147 |
[11] |
Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020468 |
[12] |
Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028 |
[13] |
Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020319 |
[14] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[15] |
Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020 doi: 10.3934/nhm.2020032 |
[16] |
Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077 |
[17] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[18] |
Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120 |
[19] |
Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350 |
[20] |
Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020048 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]