October  2016, 36(10): 5423-5443. doi: 10.3934/dcds.2016039

Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type

1. 

Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing 100124, China, China

2. 

Department of Mathematics, Hong Kong Baptist University, Hong Kong

Received  September 2015 Revised  December 2015 Published  July 2016

We analyze the optimal global and local convergence properties of continuous Galerkin (CG) solutions on quasi-geometric meshes for delay differential equations with proportional delay. It is shown that with this type of meshes the attainable order of nodal superconvergence of CG solutions is higher than of the one for uniform meshes. The theoretical results are illustrated by a broad range of numerical examples.
Citation: Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039
References:
[1]

A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529. doi: 10.1093/imanum/22.4.529. Google Scholar

[2]

A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229. doi: 10.1007/s10543-006-0055-2. Google Scholar

[3]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279. doi: 10.1016/S0168-9274(97)00026-3. Google Scholar

[4]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[6]

H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783. doi: 10.1093/imanum/21.4.783. Google Scholar

[7]

H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944. doi: 10.1137/090771922. Google Scholar

[8]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693. doi: 10.1007/s10543-010-0285-1. Google Scholar

[9]

C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001). Google Scholar

[10]

M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455. doi: 10.1090/S0025-5718-1981-0606506-0. Google Scholar

[11]

K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488. doi: 10.1016/j.amc.2006.07.147. Google Scholar

[12]

Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664. doi: 10.1137/110824632. Google Scholar

[13]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1. doi: 10.1017/S0956792500000966. Google Scholar

[14]

T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233. doi: 10.1007/s002110050470. Google Scholar

[15]

D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574. doi: 10.4208/jcm.1107-m3433. Google Scholar

[16]

Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177. doi: 10.1016/0377-0427(95)00222-7. Google Scholar

[17]

N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374. doi: 10.1023/A:1022351309662. Google Scholar

[18]

X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280. Google Scholar

[19]

X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186. Google Scholar

show all references

References:
[1]

A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529. doi: 10.1093/imanum/22.4.529. Google Scholar

[2]

A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229. doi: 10.1007/s10543-006-0055-2. Google Scholar

[3]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279. doi: 10.1016/S0168-9274(97)00026-3. Google Scholar

[4]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003). doi: 10.1093/acprof:oso/9780198506546.001.0001. Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004). doi: 10.1017/CBO9780511543234. Google Scholar

[6]

H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783. doi: 10.1093/imanum/21.4.783. Google Scholar

[7]

H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944. doi: 10.1137/090771922. Google Scholar

[8]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693. doi: 10.1007/s10543-010-0285-1. Google Scholar

[9]

C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001). Google Scholar

[10]

M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455. doi: 10.1090/S0025-5718-1981-0606506-0. Google Scholar

[11]

K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488. doi: 10.1016/j.amc.2006.07.147. Google Scholar

[12]

Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664. doi: 10.1137/110824632. Google Scholar

[13]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1. doi: 10.1017/S0956792500000966. Google Scholar

[14]

T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233. doi: 10.1007/s002110050470. Google Scholar

[15]

D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574. doi: 10.4208/jcm.1107-m3433. Google Scholar

[16]

Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177. doi: 10.1016/0377-0427(95)00222-7. Google Scholar

[17]

N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374. doi: 10.1023/A:1022351309662. Google Scholar

[18]

X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280. Google Scholar

[19]

X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186. Google Scholar

[1]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

[2]

Mickaël D. Chekroun, Michael Ghil, Honghu Liu, Shouhong Wang. Low-dimensional Galerkin approximations of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4133-4177. doi: 10.3934/dcds.2016.36.4133

[3]

Zhong-Qing Wang, Li-Lian Wang. A Legendre-Gauss collocation method for nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 685-708. doi: 10.3934/dcdsb.2010.13.685

[4]

Mahboub Baccouch. Superconvergence of the semi-discrete local discontinuous Galerkin method for nonlinear KdV-type problems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 19-54. doi: 10.3934/dcdsb.2018104

[5]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[6]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[7]

C. M. Groothedde, J. D. Mireles James. Parameterization method for unstable manifolds of delay differential equations. Journal of Computational Dynamics, 2017, 4 (1&2) : 21-70. doi: 10.3934/jcd.2017002

[8]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[9]

Hector D. Ceniceros. A semi-implicit moving mesh method for the focusing nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2002, 1 (1) : 1-18. doi: 10.3934/cpaa.2002.1.1

[10]

Qinqin Chai, Ryan Loxton, Kok Lay Teo, Chunhua Yang. A unified parameter identification method for nonlinear time-delay systems. Journal of Industrial & Management Optimization, 2013, 9 (2) : 471-486. doi: 10.3934/jimo.2013.9.471

[11]

Seyedeh Marzieh Ghavidel, Wolfgang M. Ruess. Flow invariance for nonautonomous nonlinear partial differential delay equations. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2351-2369. doi: 10.3934/cpaa.2012.11.2351

[12]

Saroj Panigrahi, Rakhee Basu. Oscillation results for second order nonlinear neutral differential equations with delay. Conference Publications, 2015, 2015 (special) : 906-912. doi: 10.3934/proc.2015.0906

[13]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[14]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[15]

H.Thomas Banks, Danielle Robbins, Karyn L. Sutton. Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1301-1333. doi: 10.3934/mbe.2013.10.1301

[16]

István Győri, Ferenc Hartung, Nahed A. Mohamady. Boundedness of positive solutions of a system of nonlinear delay differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 809-836. doi: 10.3934/dcdsb.2018044

[17]

Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052

[18]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[19]

Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369

[20]

Michael Scheutzow. Exponential growth rate for a singular linear stochastic delay differential equation. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1683-1696. doi: 10.3934/dcdsb.2013.18.1683

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]