October  2016, 36(10): 5423-5443. doi: 10.3934/dcds.2016039

Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type

1. 

Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing 100124, China, China

2. 

Department of Mathematics, Hong Kong Baptist University, Hong Kong

Received  September 2015 Revised  December 2015 Published  July 2016

We analyze the optimal global and local convergence properties of continuous Galerkin (CG) solutions on quasi-geometric meshes for delay differential equations with proportional delay. It is shown that with this type of meshes the attainable order of nodal superconvergence of CG solutions is higher than of the one for uniform meshes. The theoretical results are illustrated by a broad range of numerical examples.
Citation: Qiumei Huang, Xiuxiu Xu, Hermann Brunner. Continuous Galerkin methods on quasi-geometric meshes for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5423-5443. doi: 10.3934/dcds.2016039
References:
[1]

A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529.  doi: 10.1093/imanum/22.4.529.  Google Scholar

[2]

A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229.  doi: 10.1007/s10543-006-0055-2.  Google Scholar

[3]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.  doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[4]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511543234.  Google Scholar

[6]

H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783.  doi: 10.1093/imanum/21.4.783.  Google Scholar

[7]

H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944.  doi: 10.1137/090771922.  Google Scholar

[8]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693.  doi: 10.1007/s10543-010-0285-1.  Google Scholar

[9]

C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001).   Google Scholar

[10]

M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455.  doi: 10.1090/S0025-5718-1981-0606506-0.  Google Scholar

[11]

K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488.  doi: 10.1016/j.amc.2006.07.147.  Google Scholar

[12]

Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664.  doi: 10.1137/110824632.  Google Scholar

[13]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1.  doi: 10.1017/S0956792500000966.  Google Scholar

[14]

T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233.  doi: 10.1007/s002110050470.  Google Scholar

[15]

D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574.  doi: 10.4208/jcm.1107-m3433.  Google Scholar

[16]

Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.  doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[17]

N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374.  doi: 10.1023/A:1022351309662.  Google Scholar

[18]

X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280.   Google Scholar

[19]

X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186.   Google Scholar

show all references

References:
[1]

A. Bellen, Preservation of superconvergence in the numerical integration of delay differential equations with proportional delay,, IMA J. Numer. Anal., 22 (2002), 529.  doi: 10.1093/imanum/22.4.529.  Google Scholar

[2]

A. Bellen, H. Brunner, S. Maset and L. Torelli, Superconvergence in collocation methods on quasi-graded meshes for functional differential equations with vanishing delays,, BIT Numer. Math., 46 (2006), 229.  doi: 10.1007/s10543-006-0055-2.  Google Scholar

[3]

A. Bellen, N. Guglielmi and L. Torelli, Asymptotic stability properties of $\theta$-methods for the pantograph equation,, Appl. Numer. Math., 24 (1997), 279.  doi: 10.1016/S0168-9274(97)00026-3.  Google Scholar

[4]

A. Bellen and M. Zennaro, Numerical Methods for Delay Differential Equations,, Oxford University Press, (2003).  doi: 10.1093/acprof:oso/9780198506546.001.0001.  Google Scholar

[5]

H. Brunner, Collocation Methods for Volterra Integral and Related Functional Differential Equations,, Cambridge University Press, (2004).  doi: 10.1017/CBO9780511543234.  Google Scholar

[6]

H. Brunner, Q. Hu and Q. Lin, Geometric meshes in collocation methods for Volterra integral equations with proportional delays,, IMA J. Numer. Anal., 21 (2001), 783.  doi: 10.1093/imanum/21.4.783.  Google Scholar

[7]

H. Brunner, Q. Huang and H. Xie, Discontinuous Galerkin methods for delay differential equations of pantograph type,, SIAM. J. Numer. Anal., 48 (2010), 1944.  doi: 10.1137/090771922.  Google Scholar

[8]

H. Brunner and H. Liang, Stability of collocation methods for delay differential equations with vanishing delays,, BIT Numer. Math., 50 (2010), 693.  doi: 10.1007/s10543-010-0285-1.  Google Scholar

[9]

C. Chen, Structure Theory of Superconvergence of Finite Elements,, Hunan Press of Science and Technology, (2001).   Google Scholar

[10]

M. Delfour, W. Hager and F. Trochu, Discontinuous Galerkin methods for ordinary differential equations,, Math. Comp., 36 (1981), 455.  doi: 10.1090/S0025-5718-1981-0606506-0.  Google Scholar

[11]

K. Deng, Z. Xiong and Y. Huang, The Galerkin continuous finite element method for delay-differential equation with a variable term,, Appl. Math. Comput., 186 (2007), 1488.  doi: 10.1016/j.amc.2006.07.147.  Google Scholar

[12]

Q. Huang, H. Xie and H. Brunner, Superconvergence of discontinuous Galerkin solutions for delay differential equation of pantograph type,, SIAM. J. Sci. Comput., 33 (2011), 2664.  doi: 10.1137/110824632.  Google Scholar

[13]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1.  doi: 10.1017/S0956792500000966.  Google Scholar

[14]

T. Koto, Stability of Runge-Kutta methods for the generalized pantograph equation,, Numer. Math., 84 (1999), 233.  doi: 10.1007/s002110050470.  Google Scholar

[15]

D. Li and C. Zhang, Superconvergence of a discontinuous Galerkin Method for first-order linear delay differential equations,, J. Comput. Math., 29 (2011), 574.  doi: 10.4208/jcm.1107-m3433.  Google Scholar

[16]

Y. Liu, On the $\theta$ -method for delay differential equations with infinite lag,, J. Comput. Appl. Math., 71 (1996), 177.  doi: 10.1016/0377-0427(95)00222-7.  Google Scholar

[17]

N. Takama, Y. Muroya and E. Ishiwata, On the attainable order of collocation methods for delay differential equations with proportional delay,, BIT Numer. Math., 40 (2000), 374.  doi: 10.1023/A:1022351309662.  Google Scholar

[18]

X. Xu and Q. Huang, Continuous Galerkin methods for delay differential equations of pantograph type,, Math. Pract. Theory, 24 (2014), 280.   Google Scholar

[19]

X. Xu, Q. Huang and H. Chen, Local superconvergence of continuous Galerkin solutions for delay differential equations of pantograph type,, J. Comput. Math., 34 (2016), 186.   Google Scholar

[1]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[2]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[3]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[4]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[5]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[6]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[7]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[8]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[9]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[10]

Wenjun Liu, Hefeng Zhuang. Global attractor for a suspension bridge problem with a nonlinear delay term in the internal feedback. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 907-942. doi: 10.3934/dcdsb.2020147

[11]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[12]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Simone Göttlich, Elisa Iacomini, Thomas Jung. Properties of the LWR model with time delay. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020032

[16]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[17]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[18]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[19]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[20]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]