October  2016, 36(10): 5477-5492. doi: 10.3934/dcds.2016041

Zero-one law of Hausdorff dimensions of the recurrent sets

1. 

Department of Mathematics Education, Dongguk University - Seoul, Seoul 04620, South Korea

2. 

Department of Mathematics, South China University of Technology, Guangzhou, 510641

Received  October 2015 Revised  March 2016 Published  July 2016

Let $(\Sigma, \sigma)$ be the one-sided shift space with $m$ symbols and $R_n(x)$ be the first return time of $x\in\Sigma$ to the $n$-th cylinder containing $x$. Denote $$E^\varphi_{\alpha,\beta}=\left\{x\in\Sigma: \liminf_{n\to\infty}\frac{\log R_n(x)}{\varphi(n)}=\alpha,\ \limsup_{n\to\infty}\frac{\log R_n(x)}{\varphi(n)}=\beta\right\},$$ where $\varphi: \mathbb{N}\to \mathbb{R}^+$ is a monotonically increasing function and $0\leq\alpha\leq\beta\leq +\infty$. We show that the Hausdorff dimension of the set $E^\varphi_{\alpha,\beta}$ admits a dichotomy: it is either zero or one depending on $\varphi, \alpha$ and $\beta$.
Citation: Dong Han Kim, Bing Li. Zero-one law of Hausdorff dimensions of the recurrent sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5477-5492. doi: 10.3934/dcds.2016041
References:
[1]

J.-C. Ban and B. Li, The multifractal spectra for the recurrence rates of beta-transformations,, J. Math. Anal. Appl., 420 (2014), 1662. doi: 10.1016/j.jmaa.2014.06.051. Google Scholar

[2]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincare recurrence,, Comm. Math. Phys., 219 (2001), 443. doi: 10.1007/s002200100427. Google Scholar

[3]

M. Boshernitzan, Quantitative recurrence results,, Invent. Math., 113 (1993), 617. doi: 10.1007/BF01244320. Google Scholar

[4]

H.-B. Chen, Z.-X. Wen and M. Yu, The multifractal spectra of certain planar recurrence sets in the continued fraction dynamical system,, J. Math. Anal. Appl., 422 (2015), 1264. doi: 10.1016/j.jmaa.2014.09.023. Google Scholar

[5]

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications,, John Wiley & Sons, (1990). Google Scholar

[6]

D. J. Feng and J. Wu, The Hausdorff dimension of recurrent sets in symbolic spaces,, Nonlinearity, 14 (2001), 81. doi: 10.1088/0951-7715/14/1/304. Google Scholar

[7]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981). Google Scholar

[8]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797. doi: 10.4310/MRL.2007.v14.n5.a8. Google Scholar

[9]

S. Galatolo, D. H. Kim and K. K. Park, The recurrence time for ergodic systems with infinite invariant measures,, Nonlinearity, 19 (2006), 2567. doi: 10.1088/0951-7715/19/11/004. Google Scholar

[10]

S. Galatolo and M. J. Pacifico, Lorenz-like flows: Exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence,, Ergodic Theory Dynam. Systems, 30 (2010), 1703. doi: 10.1017/S0143385709000856. Google Scholar

[11]

R. Hill and S. Velani, The ergodic theory of shrinking targets,, Invent. Math., 119 (1995), 175. doi: 10.1007/BF01245179. Google Scholar

[12]

K. S. Lau and L. Shu, The spectrum of Poincare recurrence,, Ergod. Th. Dynam. Sys., 28 (2008), 1917. doi: 10.1017/S0143385707001095. Google Scholar

[13]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511623813. Google Scholar

[14]

L. Olsen, First return times: Multifractal spectra and divergence points,, Discrete Contin. Dyn. Syst., 10 (2004), 635. doi: 10.3934/dcds.2004.10.635. Google Scholar

[15]

L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139. doi: 10.1017/S0305004103007047. Google Scholar

[16]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inform. Theory, 39 (1993), 78. doi: 10.1109/18.179344. Google Scholar

[17]

L. Peng, Dimension of sets of sequences defined in terms of recurrence of their prefixes,, C. R. Math. Acad. Sci. Paris, 343 (2006), 129. doi: 10.1016/j.crma.2006.05.005. Google Scholar

[18]

L. Peng, B. Tan and B.-W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system,, Sci. China Math., 55 (2012), 131. doi: 10.1007/s11425-011-4303-9. Google Scholar

[19]

J. Rousseau, Recurrence rates for observations of flows,, Ergodic Theory Dynam. Systems, 32 (2012), 1727. doi: 10.1017/S014338571100037X. Google Scholar

[20]

J. Rousseau and B. Saussol, Poincaré recurrence for observations,, Trans. Amer. Math. Soc., 362 (2010), 5845. doi: 10.1090/S0002-9947-2010-05078-0. Google Scholar

[21]

B. Saussol, Recurrence rate in rapidly mixing dynamical system,, Discrete. Contin. Dyn. Sys. ser.A, 15 (2006), 259. doi: 10.3934/dcds.2006.15.259. Google Scholar

[22]

B. Saussol and J. Wu, Recurrence spectrum in smooth dynamical system,, Nonlinearity, 16 (2003), 1991. doi: 10.1088/0951-7715/16/6/306. Google Scholar

[23]

B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system,, Adv. Math., 228 (2011), 2071. doi: 10.1016/j.aim.2011.06.034. Google Scholar

show all references

References:
[1]

J.-C. Ban and B. Li, The multifractal spectra for the recurrence rates of beta-transformations,, J. Math. Anal. Appl., 420 (2014), 1662. doi: 10.1016/j.jmaa.2014.06.051. Google Scholar

[2]

L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincare recurrence,, Comm. Math. Phys., 219 (2001), 443. doi: 10.1007/s002200100427. Google Scholar

[3]

M. Boshernitzan, Quantitative recurrence results,, Invent. Math., 113 (1993), 617. doi: 10.1007/BF01244320. Google Scholar

[4]

H.-B. Chen, Z.-X. Wen and M. Yu, The multifractal spectra of certain planar recurrence sets in the continued fraction dynamical system,, J. Math. Anal. Appl., 422 (2015), 1264. doi: 10.1016/j.jmaa.2014.09.023. Google Scholar

[5]

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications,, John Wiley & Sons, (1990). Google Scholar

[6]

D. J. Feng and J. Wu, The Hausdorff dimension of recurrent sets in symbolic spaces,, Nonlinearity, 14 (2001), 81. doi: 10.1088/0951-7715/14/1/304. Google Scholar

[7]

H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory,, Princeton University Press, (1981). Google Scholar

[8]

S. Galatolo, Dimension and hitting time in rapidly mixing systems,, Math. Res. Lett., 14 (2007), 797. doi: 10.4310/MRL.2007.v14.n5.a8. Google Scholar

[9]

S. Galatolo, D. H. Kim and K. K. Park, The recurrence time for ergodic systems with infinite invariant measures,, Nonlinearity, 19 (2006), 2567. doi: 10.1088/0951-7715/19/11/004. Google Scholar

[10]

S. Galatolo and M. J. Pacifico, Lorenz-like flows: Exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence,, Ergodic Theory Dynam. Systems, 30 (2010), 1703. doi: 10.1017/S0143385709000856. Google Scholar

[11]

R. Hill and S. Velani, The ergodic theory of shrinking targets,, Invent. Math., 119 (1995), 175. doi: 10.1007/BF01245179. Google Scholar

[12]

K. S. Lau and L. Shu, The spectrum of Poincare recurrence,, Ergod. Th. Dynam. Sys., 28 (2008), 1917. doi: 10.1017/S0143385707001095. Google Scholar

[13]

P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511623813. Google Scholar

[14]

L. Olsen, First return times: Multifractal spectra and divergence points,, Discrete Contin. Dyn. Syst., 10 (2004), 635. doi: 10.3934/dcds.2004.10.635. Google Scholar

[15]

L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion,, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139. doi: 10.1017/S0305004103007047. Google Scholar

[16]

D. Ornstein and B. Weiss, Entropy and data compression schemes,, IEEE Trans. Inform. Theory, 39 (1993), 78. doi: 10.1109/18.179344. Google Scholar

[17]

L. Peng, Dimension of sets of sequences defined in terms of recurrence of their prefixes,, C. R. Math. Acad. Sci. Paris, 343 (2006), 129. doi: 10.1016/j.crma.2006.05.005. Google Scholar

[18]

L. Peng, B. Tan and B.-W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system,, Sci. China Math., 55 (2012), 131. doi: 10.1007/s11425-011-4303-9. Google Scholar

[19]

J. Rousseau, Recurrence rates for observations of flows,, Ergodic Theory Dynam. Systems, 32 (2012), 1727. doi: 10.1017/S014338571100037X. Google Scholar

[20]

J. Rousseau and B. Saussol, Poincaré recurrence for observations,, Trans. Amer. Math. Soc., 362 (2010), 5845. doi: 10.1090/S0002-9947-2010-05078-0. Google Scholar

[21]

B. Saussol, Recurrence rate in rapidly mixing dynamical system,, Discrete. Contin. Dyn. Sys. ser.A, 15 (2006), 259. doi: 10.3934/dcds.2006.15.259. Google Scholar

[22]

B. Saussol and J. Wu, Recurrence spectrum in smooth dynamical system,, Nonlinearity, 16 (2003), 1991. doi: 10.1088/0951-7715/16/6/306. Google Scholar

[23]

B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system,, Adv. Math., 228 (2011), 2071. doi: 10.1016/j.aim.2011.06.034. Google Scholar

[1]

Chihurn Kim, Dong Han Kim. On the law of logarithm of the recurrence time. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 581-587. doi: 10.3934/dcds.2004.10.581

[2]

Luis Barreira and Jorg Schmeling. Invariant sets with zero measure and full Hausdorff dimension. Electronic Research Announcements, 1997, 3: 114-118.

[3]

Tomasz Downarowicz, Olena Karpel. Dynamics in dimension zero A survey. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1033-1062. doi: 10.3934/dcds.2018044

[4]

Shmuel Friedland, Gunter Ochs. Hausdorff dimension, strong hyperbolicity and complex dynamics. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 405-430. doi: 10.3934/dcds.1998.4.405

[5]

Nasab Yassine. Quantitative recurrence of some dynamical systems preserving an infinite measure in dimension one. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 343-361. doi: 10.3934/dcds.2018017

[6]

Petr Kůrka, Vincent Penné, Sandro Vaienti. Dynamically defined recurrence dimension. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 137-146. doi: 10.3934/dcds.2002.8.137

[7]

Lars Olsen. First return times: multifractal spectra and divergence points. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 635-656. doi: 10.3934/dcds.2004.10.635

[8]

Paulina Grzegorek, Michal Kupsa. Exponential return times in a zero-entropy process. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1339-1361. doi: 10.3934/cpaa.2012.11.1339

[9]

Steven T. Piantadosi. Symbolic dynamics on free groups. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 725-738. doi: 10.3934/dcds.2008.20.725

[10]

Hiroki Sumi, Mariusz Urbański. Bowen parameter and Hausdorff dimension for expanding rational semigroups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2591-2606. doi: 10.3934/dcds.2012.32.2591

[11]

Sara Munday. On Hausdorff dimension and cusp excursions for Fuchsian groups. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2503-2520. doi: 10.3934/dcds.2012.32.2503

[12]

Jon Chaika. Hausdorff dimension for ergodic measures of interval exchange transformations. Journal of Modern Dynamics, 2008, 2 (3) : 457-464. doi: 10.3934/jmd.2008.2.457

[13]

Krzysztof Barański, Michał Wardal. On the Hausdorff dimension of the Sierpiński Julia sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3293-3313. doi: 10.3934/dcds.2015.35.3293

[14]

Jim Wiseman. Symbolic dynamics from signed matrices. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 621-638. doi: 10.3934/dcds.2004.11.621

[15]

George Osipenko, Stephen Campbell. Applied symbolic dynamics: attractors and filtrations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 43-60. doi: 10.3934/dcds.1999.5.43

[16]

Michael Hochman. A note on universality in multidimensional symbolic dynamics. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 301-314. doi: 10.3934/dcdss.2009.2.301

[17]

Yixiao Qiao, Xiaoyao Zhou. Zero sequence entropy and entropy dimension. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 435-448. doi: 10.3934/dcds.2017018

[18]

L'ubomír Snoha, Vladimír Špitalský. Recurrence equals uniform recurrence does not imply zero entropy for triangular maps of the square. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 821-835. doi: 10.3934/dcds.2006.14.821

[19]

Jean-René Chazottes, Renaud Leplaideur. Fluctuations of the nth return time for Axiom A diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 399-411. doi: 10.3934/dcds.2005.13.399

[20]

Ian Johnson, Evelyn Sander, Thomas Wanner. Branch interactions and long-term dynamics for the diblock copolymer model in one dimension. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3671-3705. doi: 10.3934/dcds.2013.33.3671

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]