Advanced Search
Article Contents
Article Contents

Zero-one law of Hausdorff dimensions of the recurrent sets

Abstract Related Papers Cited by
  • Let $(\Sigma, \sigma)$ be the one-sided shift space with $m$ symbols and $R_n(x)$ be the first return time of $x\in\Sigma$ to the $n$-th cylinder containing $x$. Denote $$E^\varphi_{\alpha,\beta}=\left\{x\in\Sigma: \liminf_{n\to\infty}\frac{\log R_n(x)}{\varphi(n)}=\alpha,\ \limsup_{n\to\infty}\frac{\log R_n(x)}{\varphi(n)}=\beta\right\},$$ where $\varphi: \mathbb{N}\to \mathbb{R}^+$ is a monotonically increasing function and $0\leq\alpha\leq\beta\leq +\infty$. We show that the Hausdorff dimension of the set $E^\varphi_{\alpha,\beta}$ admits a dichotomy: it is either zero or one depending on $\varphi, \alpha$ and $\beta$.
    Mathematics Subject Classification: 28A80.


    \begin{equation} \\ \end{equation}
  • [1]

    J.-C. Ban and B. Li, The multifractal spectra for the recurrence rates of beta-transformations, J. Math. Anal. Appl., 420 (2014), 1662-1679.doi: 10.1016/j.jmaa.2014.06.051.


    L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincare recurrence, Comm. Math. Phys., 219 (2001), 443-463.doi: 10.1007/s002200100427.


    M. Boshernitzan, Quantitative recurrence results, Invent. Math., 113 (1993), 617-631.doi: 10.1007/BF01244320.


    H.-B. Chen, Z.-X. Wen and M. Yu, The multifractal spectra of certain planar recurrence sets in the continued fraction dynamical system, J. Math. Anal. Appl., 422 (2015), 1264-1276.doi: 10.1016/j.jmaa.2014.09.023.


    K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.


    D. J. Feng and J. Wu, The Hausdorff dimension of recurrent sets in symbolic spaces, Nonlinearity, 14 (2001), 81-85.doi: 10.1088/0951-7715/14/1/304.


    H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, New Jersey, 1981.


    S. Galatolo, Dimension and hitting time in rapidly mixing systems, Math. Res. Lett., 14 (2007), 797-805.doi: 10.4310/MRL.2007.v14.n5.a8.


    S. Galatolo, D. H. Kim and K. K. Park, The recurrence time for ergodic systems with infinite invariant measures, Nonlinearity, 19 (2006), 2567-2580.doi: 10.1088/0951-7715/19/11/004.


    S. Galatolo and M. J. Pacifico, Lorenz-like flows: Exponential decay of correlations for the Poincaré map, logarithm law, quantitative recurrence, Ergodic Theory Dynam. Systems, 30 (2010), 1703-1737.doi: 10.1017/S0143385709000856.


    R. Hill and S. Velani, The ergodic theory of shrinking targets, Invent. Math., 119 (1995), 175-198.doi: 10.1007/BF01245179.


    K. S. Lau and L. Shu, The spectrum of Poincare recurrence, Ergod. Th. Dynam. Sys., 28 (2008), 1917-1943.doi: 10.1017/S0143385707001095.


    P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Fractals and Rectifiability, Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995.doi: 10.1017/CBO9780511623813.


    L. Olsen, First return times: Multifractal spectra and divergence points, Discrete Contin. Dyn. Syst., 10 (2004), 635-656.doi: 10.3934/dcds.2004.10.635.


    L. Olsen, Applications of multifractal divergence points to sets of numbers defined by their $N$-adic expansion, Math. Proc. Cambridge Philos. Soc., 136 (2004), 139-165.doi: 10.1017/S0305004103007047.


    D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory, 39 (1993), 78-83.doi: 10.1109/18.179344.


    L. Peng, Dimension of sets of sequences defined in terms of recurrence of their prefixes, C. R. Math. Acad. Sci. Paris, 343 (2006), 129-133.doi: 10.1016/j.crma.2006.05.005.


    L. Peng, B. Tan and B.-W. Wang, Quantitative Poincaré recurrence in continued fraction dynamical system, Sci. China Math., 55 (2012), 131-140.doi: 10.1007/s11425-011-4303-9.


    J. Rousseau, Recurrence rates for observations of flows, Ergodic Theory Dynam. Systems, 32 (2012), 1727-1751.doi: 10.1017/S014338571100037X.


    J. Rousseau and B. Saussol, Poincaré recurrence for observations, Trans. Amer. Math. Soc., 362 (2010), 5845-5859.doi: 10.1090/S0002-9947-2010-05078-0.


    B. Saussol, Recurrence rate in rapidly mixing dynamical system, Discrete. Contin. Dyn. Sys. ser.A, 15 (2006), 259-267.doi: 10.3934/dcds.2006.15.259.


    B. Saussol and J. Wu, Recurrence spectrum in smooth dynamical system, Nonlinearity, 16 (2003), 1991-2001.doi: 10.1088/0951-7715/16/6/306.


    B. Tan and B.-W. Wang, Quantitative recurrence properties for beta-dynamical system, Adv. Math., 228 (2011), 2071-2097.doi: 10.1016/j.aim.2011.06.034.

  • 加载中

Article Metrics

HTML views() PDF downloads(254) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint