October  2016, 36(10): 5493-5508. doi: 10.3934/dcds.2016042

Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation

1. 

Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China

2. 

Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou

Received  November 2015 Revised  December 2015 Published  July 2016

We first establish the local existence and uniqueness of strong solutions for the Cauchy problem of a generalized Camassa-Holm equation in nonhomogeneous Besov spaces by using the Littlewood-Paley theory. Then, we prove that the solution depends continuously on the initial data in the corresponding Besov space. Finally, we derive a blow-up criterion and present a blow-up result and a blow-up rate of the blow-up solutions to the equation.
Citation: Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042
References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[6]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 233 (2006), 60. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[7]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53. Google Scholar

[8]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. doi: 10.5802/aif.1757. Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303. Google Scholar

[12]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[16]

A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[17]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation,, Nonlinearity 23 (2010), 23 (2010), 2559. doi: 10.1088/0951-7715/23/10/012. Google Scholar

[18]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[19]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[20]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[21]

R. Danchin, A few remarks on the Camassa-Holm equation., Differential Integral Equations, 14 (2001), 953. Google Scholar

[22]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429. doi: 10.1016/S0022-0396(03)00096-2. Google Scholar

[23]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theoret. and Math. Phys., 133 (2002), 1463. doi: 10.1023/A:1021186408422. Google Scholar

[24]

A. Degasperis and M. Procesi, Asymptotic integrability. Symmetry and perturbation theory,, World Sci. Publ., (1999), 23. Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations,, Phys. D, 190 (2004), 1. doi: 10.1016/j.physd.2003.11.004. Google Scholar

[26]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[27]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[29]

G. Gui and Y. Liu, On the Cauchy problem for the Degasperis-Procesi equation,, Quart. Appl. Math., 69 (2011), 445. doi: 10.1090/S0033-569X-2011-01216-5. Google Scholar

[30]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449. doi: 10.1088/0951-7715/25/2/449. Google Scholar

[31]

A. N. W. Hone and J. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/37/372002. Google Scholar

[32]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[33]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[34]

J. Li and Z. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation,, Nonlinear Anal. Real World Appl., 28 (2016), 72. doi: 10.1016/j.nonrwa.2015.09.003. Google Scholar

[35]

Y. Liu and Z. Yin, Global Existence and Blow-up Phenomena for the Degasperis-Procesi Equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. Google Scholar

[36]

Y. Liu and Z. Yin, On the blow-up phenomena for the Degasperis-Procesi equation,, Int. Math. Res. Not. IMRN, 23 (2007). doi: 10.1093/imrn/rnm117. Google Scholar

[37]

H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation,, J. Nonlinear Sci., 17 (2007), 169. doi: 10.1007/s00332-006-0803-3. Google Scholar

[38]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[39]

V. Novikov, Generalization of the Camassa-Holm equation,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/34/342002. Google Scholar

[40]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1. Google Scholar

[41]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059. doi: 10.1016/j.chaos.2003.09.043. Google Scholar

[42]

X. Wu and Z. Yin, Global weak solutions for the Novikov equation,, J. Phys. A, 44 (2011). doi: 10.1088/1751-8113/44/5/055202. Google Scholar

[43]

X. Wu and Z. Yin, Well-posedness and global existence for the Novikov equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 707. Google Scholar

[44]

X. Wu and Z. Yin, A note on the Cauchy problem of the Novikov equation,, Appl. Anal., 92 (2013), 1116. doi: 10.1080/00036811.2011.649735. Google Scholar

[45]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation,, J. Differential Equations, 253 (2012), 298. doi: 10.1016/j.jde.2012.03.015. Google Scholar

[46]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the Novikov equation,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1157. doi: 10.1007/s00030-012-0202-1. Google Scholar

[47]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649. Google Scholar

[48]

Z. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[49]

Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[50]

Z. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189. doi: 10.1512/iumj.2004.53.2479. Google Scholar

show all references

References:
[1]

H. Bahouri, J.-Y. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Grundlehren der Mathematischen Wissenschaften, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Anal. Appl., 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. Camassa, D. Holm and J. Hyman, A new integrable shallow water equation,, Adv. Appl. Mech., 31 (1994), 1. Google Scholar

[6]

G. M. Coclite and K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation,, J. Funct. Anal., 233 (2006), 60. doi: 10.1016/j.jfa.2005.07.008. Google Scholar

[7]

A. Constantin, The Hamiltonian structure of the Camassa-Holm equation,, Exposition. Math., 15 (1997), 53. Google Scholar

[8]

A. Constantin, On the scattering problem for the Camassa-Holm equation,, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953. doi: 10.1098/rspa.2000.0701. Google Scholar

[9]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier (Grenoble), 50 (2000), 321. doi: 10.5802/aif.1757. Google Scholar

[10]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. Math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5. Google Scholar

[11]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303. Google Scholar

[12]

A. Constantin and J. Escher, Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation,, Comm. Pure Appl. Math., 51 (1998), 475. doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. Google Scholar

[13]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[14]

A. Constantin and J. Escher, Particle trajectories in solitary water waves,, Bull. Amer. Math. Soc., 44 (2007), 423. doi: 10.1090/S0273-0979-07-01159-7. Google Scholar

[15]

A. Constantin and J. Escher, Analyticity of periodic traveling free surface water waves with vorticity,, Ann. of Math., 173 (2011), 559. doi: 10.4007/annals.2011.173.1.12. Google Scholar

[16]

A. Constantin, V. S. Gerdjikov and R. I. Ivanov, Inverse scattering transform for the Camassa-Holm equation,, Inverse Problems, 22 (2006), 2197. doi: 10.1088/0266-5611/22/6/017. Google Scholar

[17]

A. Constantin, R. I. Ivanov and J. Lenells, Inverse scattering transform for the Degasperis-Procesi equation,, Nonlinearity 23 (2010), 23 (2010), 2559. doi: 10.1088/0951-7715/23/10/012. Google Scholar

[18]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[19]

A. Constantin and H. P. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. Google Scholar

[20]

A. Constantin and W. A. Strauss, Stability of peakons,, Comm. Pure Appl. Math., 53 (2000), 603. doi: 10.1002/(SICI)1097-0312(200005)53:5<603::AID-CPA3>3.0.CO;2-L. Google Scholar

[21]

R. Danchin, A few remarks on the Camassa-Holm equation., Differential Integral Equations, 14 (2001), 953. Google Scholar

[22]

R. Danchin, A note on well-posedness for Camassa-Holm equation,, J. Differential Equations, 192 (2003), 429. doi: 10.1016/S0022-0396(03)00096-2. Google Scholar

[23]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theoret. and Math. Phys., 133 (2002), 1463. doi: 10.1023/A:1021186408422. Google Scholar

[24]

A. Degasperis and M. Procesi, Asymptotic integrability. Symmetry and perturbation theory,, World Sci. Publ., (1999), 23. Google Scholar

[25]

H. R. Dullin, G. A. Gottwald and D. D. Holm, On asymptotically equivalent shallow water wave equations,, Phys. D, 190 (2004), 1. doi: 10.1016/j.physd.2003.11.004. Google Scholar

[26]

J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation,, J. Funct. Anal., 241 (2006), 457. doi: 10.1016/j.jfa.2006.03.022. Google Scholar

[27]

J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation,, Indiana Univ. Math. J., 56 (2007), 87. doi: 10.1512/iumj.2007.56.3040. Google Scholar

[28]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Phys. D, 4 (): 47. doi: 10.1016/0167-2789(81)90004-X. Google Scholar

[29]

G. Gui and Y. Liu, On the Cauchy problem for the Degasperis-Procesi equation,, Quart. Appl. Math., 69 (2011), 445. doi: 10.1090/S0033-569X-2011-01216-5. Google Scholar

[30]

A. A. Himonas and C. Holliman, The Cauchy problem for the Novikov equation,, Nonlinearity, 25 (2012), 449. doi: 10.1088/0951-7715/25/2/449. Google Scholar

[31]

A. N. W. Hone and J. Wang, Integrable peakon equations with cubic nonlinearity,, J. Phys. A, 41 (2008). doi: 10.1088/1751-8113/41/37/372002. Google Scholar

[32]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 891. doi: 10.1002/cpa.3160410704. Google Scholar

[33]

J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation,, J. Math. Anal. Appl., 306 (2005), 72. doi: 10.1016/j.jmaa.2004.11.038. Google Scholar

[34]

J. Li and Z. Yin, Well-posedness and global existence for a generalized Degasperis-Procesi equation,, Nonlinear Anal. Real World Appl., 28 (2016), 72. doi: 10.1016/j.nonrwa.2015.09.003. Google Scholar

[35]

Y. Liu and Z. Yin, Global Existence and Blow-up Phenomena for the Degasperis-Procesi Equation,, Comm. Math. Phys., 267 (2006), 801. doi: 10.1007/s00220-006-0082-5. Google Scholar

[36]

Y. Liu and Z. Yin, On the blow-up phenomena for the Degasperis-Procesi equation,, Int. Math. Res. Not. IMRN, 23 (2007). doi: 10.1093/imrn/rnm117. Google Scholar

[37]

H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation,, J. Nonlinear Sci., 17 (2007), 169. doi: 10.1007/s00332-006-0803-3. Google Scholar

[38]

H. Lundmark and J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation,, Inverse Problems, 19 (2003), 1241. doi: 10.1088/0266-5611/19/6/001. Google Scholar

[39]

V. Novikov, Generalization of the Camassa-Holm equation,, J. Phys. A, 42 (2009). doi: 10.1088/1751-8113/42/34/342002. Google Scholar

[40]

J. F. Toland, Stokes waves,, Topol. Methods Nonlinear Anal., 7 (1996), 1. Google Scholar

[41]

V. O. Vakhnenko and E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation,, Chaos Solitons Fractals, 20 (2004), 1059. doi: 10.1016/j.chaos.2003.09.043. Google Scholar

[42]

X. Wu and Z. Yin, Global weak solutions for the Novikov equation,, J. Phys. A, 44 (2011). doi: 10.1088/1751-8113/44/5/055202. Google Scholar

[43]

X. Wu and Z. Yin, Well-posedness and global existence for the Novikov equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 707. Google Scholar

[44]

X. Wu and Z. Yin, A note on the Cauchy problem of the Novikov equation,, Appl. Anal., 92 (2013), 1116. doi: 10.1080/00036811.2011.649735. Google Scholar

[45]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the integrable Novikov equation,, J. Differential Equations, 253 (2012), 298. doi: 10.1016/j.jde.2012.03.015. Google Scholar

[46]

W. Yan, Y. Li and Y. Zhang, The Cauchy problem for the Novikov equation,, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 1157. doi: 10.1007/s00030-012-0202-1. Google Scholar

[47]

Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions,, Illinois J. Math., 47 (2003), 649. Google Scholar

[48]

Z. Yin, Global existence for a new periodic integrable equation,, J. Math. Anal. Appl., 283 (2003), 129. doi: 10.1016/S0022-247X(03)00250-6. Google Scholar

[49]

Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions,, J. Funct. Anal., 212 (2004), 182. doi: 10.1016/j.jfa.2003.07.010. Google Scholar

[50]

Z. Yin, Global solutions to a new integrable equation with peakons,, Indiana Univ. Math. J., 53 (2004), 1189. doi: 10.1512/iumj.2004.53.2479. Google Scholar

[1]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[2]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[3]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[4]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[5]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[6]

Min Zhu, Ying Wang. Blow-up of solutions to the periodic generalized modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 645-661. doi: 10.3934/dcds.2017027

[7]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[8]

Min Zhu, Shuanghu Zhang. Blow-up of solutions to the periodic modified Camassa-Holm equation with varying linear dispersion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7235-7256. doi: 10.3934/dcds.2016115

[9]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[10]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[11]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[12]

Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041

[13]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[14]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[15]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[16]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[17]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[18]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[19]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[20]

Jens Lorenz, Wilberclay G. Melo, Natã Firmino Rocha. The Magneto–Hydrodynamic equations: Local theory and blow-up of solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3819-3841. doi: 10.3934/dcdsb.2018332

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (21)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]