Citation: |
[1] |
J. Aaronson and O. Sarig, Exponential chi-squared distributions in infinite ergodic theory, Ergodic Theory and Dynamical Systems, 34 (2014), 705-724.doi: 10.1017/etds.2012.160. |
[2] |
T. M. Adams, Smorodinsky's conjecture on rank-one mixing, Proc. Amer. Math. Soc., 126 (1998), 739-744.doi: 10.1090/S0002-9939-98-04082-9. |
[3] |
W. Ambrose, Representation of ergodic flows, Ann. of Math. (2), 42 (1941), 723-739.doi: 10.2307/1969259. |
[4] |
P. Arnoux, D. S. Ornstein and B. Weiss, Cutting and stacking, interval exchanges and geometric models, Israel J. Math., 50 (1985), 160-168.doi: 10.1007/BF02761122. |
[5] |
P. Arnoux and J.-C. Yoccoz, Construction de difféomorphismes pseudo-Anosov, C. R. Acad. Sci. Paris Sér. I Math., 292 (1981), 75-78. |
[6] |
S. Bezuglyi, J. Kwiatkowski and K. Medynets, Aperiodic substitution systems and their Bratteli diagrams, Ergodic Theory Dynam. Systems, 29 (2009), 37-72.doi: 10.1017/S0143385708000230. |
[7] |
S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak, Invariant measures on stationary Bratteli diagrams, Ergodic Theory Dynam. Systems, 30 (2010), 973-1007.doi: 10.1017/S0143385709000443. |
[8] |
S. Bezuglyi, J. Kwiatkowski, K. Medynets and B. Solomyak, Finite rank Bratteli diagrams: Structure of invariant measures, Trans. Amer. Math. Soc., 365 (2013), 2637-2679.doi: 10.1090/S0002-9947-2012-05744-8. |
[9] |
R. Bowen and B. Marcus, Unique ergodicity for horocycle foliations, Israel J. Math., 26 (1977), 43-67.doi: 10.1007/BF03007655. |
[10] |
J. Bowman, The complete family of Arnoux-Yoccoz surfaces, Geometriae Dedicata, 164 (2013), 113-130.doi: 10.1007/s10711-012-9762-9. |
[11] |
O. Bratteli, Inductive limits of finite dimensional $C^{*} $-algebras, Trans. Amer. Math. Soc., 171 (1972), 195-234. |
[12] |
A. I. Bufetov, Limit theorems for suspension flows over vershik automorphisms, Russian Mathematical Surveys, 68 (2013), 789-860. |
[13] |
A. I. Bufetov, Finitely-additive measures on the asymptotic foliations of a Markov compactum, Mosc. Math. J., 14 (2014), 205-224, 426. |
[14] |
A. I. Bufetov, Limit theorems for translation flows, Ann. of Math. (2), 179 (2014), 431-499.doi: 10.4007/annals.2014.179.2.2. |
[15] |
R. V. Chacon, Weakly mixing transformations which are not strongly mixing, Proc. Amer. Math. Soc., 22 (1969), 559-562.doi: 10.1090/S0002-9939-1969-0247028-5. |
[16] |
R. Chamanara, Affine automorphism groups of surfaces of infinite type, In In the tradition of Ahlfors and Bers, III, volume 355 of Contemp. Math., pages 123-145. Amer. Math. Soc., Providence, RI, 2004.doi: 10.1090/conm/355/06449. |
[17] |
D. Creutz and C. E. Silva, Mixing on rank-one transformations, Studia Math., 199 (2010), 43-72.doi: 10.4064/sm199-1-4. |
[18] |
M. D. Esposti, G. Del Magno and M. Lenci, Escape orbits and ergodicity in infinite step billiards, Nonlinearity, 13 (2000), 1275-1292.doi: 10.1088/0951-7715/13/4/316. |
[19] |
V. Delecroix, P. Hubert and S. Lelièvre, Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér., 47 (2014), 1085-1110. |
[20] |
F. Durand, B. Host and C. Skau, Substitutional dynamical systems, Bratteli diagrams and dimension groups, Ergodic Theory Dynam. Systems, 19 (1999), 953-993.doi: 10.1017/S0143385799133947. |
[21] |
S. Ferenczi, A. M. Fisher and M. Talet, Minimality and unique ergodicity for adic transformations, J. Anal. Math., 109 (2009), 1-31.doi: 10.1007/s11854-009-0027-y. |
[22] |
A. M. Fisher, Nonstationary mixing and the unique ergodicity of adic transformations, Stoch. Dyn., 9 (2009), 335-391.doi: 10.1142/S0219493709002701. |
[23] |
G. Forni and C. Matheus, Introduction to Teichmüller theory and its applications to dynamics of interval exchange transformations, flows on surfaces and billiards, ArXiv e-prints, November 2013. |
[24] |
K. Frączek and C. Ulcigrai, Non-ergodic Z-periodic billiards and infinite translation surfaces, Invent. Math., 197 (2014), 241-298.doi: 10.1007/s00222-013-0482-z. |
[25] |
R. Gjerde and Ø. Johansen, Bratteli-Vershik models for Cantor minimal systems associated to interval exchange transformations, Math. Scand., 90 (2002), 87-100. |
[26] |
R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math., 3 (1992), 827-864.doi: 10.1142/S0129167X92000382. |
[27] |
W. Patrick Hooper, The invariant measures of some infinite interval exchange maps, Geom. Topol., 19 (2015), 1895-2038, arXiv:1005.1902.doi: 10.2140/gt.2015.19.1895. |
[28] |
W. Patrick Hooper, P. Hubert and B. Weiss, Dynamics on the infinite staircase, Discrete Contin. Dyn. Syst., 33 (2013), 4341-4347.doi: 10.3934/dcds.2013.33.4341. |
[29] |
P. Hubert and E. Lanneau, Veech groups without parabolic elements, Duke Math. J., 133 (2006), 335-346.doi: 10.1215/S0012-7094-06-13326-4. |
[30] |
P. Hubert, S. Lelièvre and S. Troubetzkoy, The Ehrenfest wind-tree model: Periodic directions, recurrence, diffusion, J. Reine Angew. Math., 656 (2011), 223-244.doi: 10.1515/CRELLE.2011.052. |
[31] |
A. Katok, Interval exchange transformations and some special flows are not mixing, Israel J. Math., 35 (1980), 301-310.doi: 10.1007/BF02760655. |
[32] |
X. Méla and K. Petersen, Dynamical properties of the Pascal adic transformation, Ergodic Theory Dynam. Systems, 25 (2005), 227-256.doi: 10.1017/S0143385704000173. |
[33] |
D. S. Ornstein, On the root problem in ergodic theory, In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory, pages 347-356, Berkeley, Calif., 1972. Univ. California Press. |
[34] |
K. Petersen and K. Schmidt, Symmetric Gibbs measures, Trans. Amer. Math. Soc., 349 (1997), 2775-2811.doi: 10.1090/S0002-9947-97-01934-X. |
[35] |
D. Ralston and S. Troubetzkoy, Ergodic infinite group extensions of geodesic flows on translation surfaces, J. Mod. Dyn., 6 (2012), 477-497. |
[36] |
G. Rauzy, Une généralisation du développement en fraction continue, In Séminaire Delange-Pisot-Poitou, 18e année: 1976/77, Théorie des nombres, Fasc. 1, pages Exp. No. 15, 16. Secrétariat Math., Paris, 1977. |
[37] |
G. Rauzy, Échanges d'intervalles et transformations induites, Acta Arith., 34 (1979), 315-328. |
[38] |
D. Rudolph, A two-valued step coding for ergodic flows, Math. Z., 150 (1976), 201-220.doi: 10.1007/BF01221147. |
[39] |
P. Shields, Cutting and independent stacking of intervals, Math. Systems Theory, 7 (1973), 1-4.doi: 10.1007/BF01824799. |
[40] |
C. E. Silva, Invitation to Ergodic Theory, volume 42 of Student Mathematical Library, American Mathematical Society, Providence, RI, 2008. |
[41] |
K. Strebel, Quadratic Differentials, volume 5 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1984.doi: 10.1007/978-3-662-02414-0. |
[42] |
R. Treviño, On the ergodicity of flat surfaces of finite area, Geom. Funct. Anal., 24 (2014), 360-386.doi: 10.1007/s00039-014-0269-4. |
[43] |
W. A. Veech, Interval exchange transformations, J. Analyse Math., 33 (1978), 222-272.doi: 10.1007/BF02790174. |
[44] |
W. A. Veech, Gauss measures for transformations on the space of interval exchange maps, Ann. of Math. (2), 115 (1982), 201-242.doi: 10.2307/1971391. |
[45] |
A. M. Vershik, A new model of the ergodic transformations, In Dynamical systems and ergodic theory (Warsaw, 1986), Banach Center Publ., 23, PWN, Warsaw, 1989, 381-384. |
[46] |
M. Viana, Dynamics of Interval Exchange Transformations and Teichmüller Flows, Lecture Notes, 2008. |
[47] |
A. Zorich, Flat surfaces, In Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, 437-583.doi: 10.1007/978-3-540-31347-2_13. |