October  2016, 36(10): 5579-5594. doi: 10.3934/dcds.2016045

Serrin's regularity results for the incompressible liquid crystals system

1. 

Institute of Mathematics, Fudan University, Shanghai

2. 

School of Mathematic Sciences, Fudan University/Shanghai University of Medicine and Health Sciences, Shanghai, China

3. 

School of Mathematic Sciences, Soochow University, Suzhou, China

4. 

School of Mathematic Sciences, Fudan University, Shanghai, China

Received  August 2015 Revised  November 2015 Published  July 2016

In this paper, we study the simplified system of the original Ericksen--Leslie equations for the flow of liquid crystals [10]. Under Serrin criteria [13], we prove a partial interior regularity result of weak solutions for the three-dimensional incompressible liquid crystal system.
Citation: Xian-Gao Liu, Jianzhong Min, Kui Wang, Xiaotao Zhang. Serrin's regularity results for the incompressible liquid crystals system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5579-5594. doi: 10.3934/dcds.2016045
References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. Pure Appl. Math., 35 (1982), 771.  doi: 10.1002/cpa.3160350604.  Google Scholar

[2]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci Flow, volume 77 of Graduate Studies in Mathematics,, American Mathematical Society, (2006).  doi: 10.1090/gsm/077.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics,, American Mathematical Society, (1998).   Google Scholar

[4]

E. B. Fabes, B. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in $L^p$,, Arch. Rational Mech. Anal., 45 (1972), 222.  doi: 10.1007/BF00281533.  Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[7]

T. Huang, F. Lin, C. Liu and C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three,, Archive for Rational Mechanics and Analysis, (2016), 1.  doi: 10.1007/s00205-016-0983-1.  Google Scholar

[8]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Communications in Partial Differential Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

L. Iskauriaza, G. A. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, Uspekhi Mat. Nauk, 58 (2003), 3.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[10]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[11]

F.-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dynam. Systems, 2 (1996), 1.   Google Scholar

[12]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[14]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437.  doi: 10.1002/cpa.3160410404.  Google Scholar

[15]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations,, Aspects of Mathematics, (1985).  doi: 10.1007/978-3-663-13911-9.  Google Scholar

show all references

References:
[1]

L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations,, Comm. Pure Appl. Math., 35 (1982), 771.  doi: 10.1002/cpa.3160350604.  Google Scholar

[2]

B. Chow, P. Lu and L. Ni, Hamilton's Ricci Flow, volume 77 of Graduate Studies in Mathematics,, American Mathematical Society, (2006).  doi: 10.1090/gsm/077.  Google Scholar

[3]

L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics,, American Mathematical Society, (1998).   Google Scholar

[4]

E. B. Fabes, B. F. Jones and N. M. Rivière, The initial value problem for the Navier-Stokes equations with data in $L^p$,, Arch. Rational Mech. Anal., 45 (1972), 222.  doi: 10.1007/BF00281533.  Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186.  doi: 10.1016/0022-0396(86)90096-3.  Google Scholar

[6]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Classics in Mathematics. Springer-Verlag, (2001).   Google Scholar

[7]

T. Huang, F. Lin, C. Liu and C. Wang, Finite time singularity of the nematic liquid crystal flow in dimension three,, Archive for Rational Mechanics and Analysis, (2016), 1.  doi: 10.1007/s00205-016-0983-1.  Google Scholar

[8]

T. Huang and C. Wang, Blow up criterion for nematic liquid crystal flows,, Communications in Partial Differential Equations, 37 (2012), 875.  doi: 10.1080/03605302.2012.659366.  Google Scholar

[9]

L. Iskauriaza, G. A. Serëgin and V. Shverak, $L_{3,\infty}$-solutions of Navier-Stokes equations and backward uniqueness,, Uspekhi Mat. Nauk, 58 (2003), 3.  doi: 10.1070/RM2003v058n02ABEH000609.  Google Scholar

[10]

F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,, Comm. Pure Appl. Math., 48 (1995), 501.  doi: 10.1002/cpa.3160480503.  Google Scholar

[11]

F.-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid crystals,, Discrete Contin. Dynam. Systems, 2 (1996), 1.   Google Scholar

[12]

F. Lin, J. Lin and C. Wang, Liquid crystal flows in two dimensions,, Arch. Ration. Mech. Anal., 197 (2010), 297.  doi: 10.1007/s00205-009-0278-x.  Google Scholar

[13]

J. Serrin, On the interior regularity of weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 9 (1962), 187.   Google Scholar

[14]

M. Struwe, On partial regularity results for the Navier-Stokes equations,, Comm. Pure Appl. Math., 41 (1988), 437.  doi: 10.1002/cpa.3160410404.  Google Scholar

[15]

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations,, Aspects of Mathematics, (1985).  doi: 10.1007/978-3-663-13911-9.  Google Scholar

[1]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[2]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[3]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[4]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[5]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[13]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[14]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[15]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[16]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (5)

[Back to Top]