• Previous Article
    On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay
  • DCDS Home
  • This Issue
  • Next Article
    On the Hollman McKenna conjecture: Interior concentration near curves
October  2016, 36(10): 5627-5655. doi: 10.3934/dcds.2016047

Exact multiplicity of stationary limiting problems of a cell polarization model

1. 

Center for PDE, East China Normal University, Minhang, Shanghai 200241, China

2. 

Department of Communication Engineering and Informatics, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan

3. 

Faculty of Engineering, University of Miyazaki, Miyazaki, 889-2192

4. 

Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Otsu, Shiga 520-2194

Received  September 2015 Revised  December 2015 Published  July 2016

We show existence, nonexistence, and exact multiplicity for stationary limiting problems of a cell polarization model proposed by Y. Mori, A. Jilkine and L. Edelstein-Keshet. It is a nonlinear boundary value problem with total mass constraint. We obtain exact multiplicity results by investigating a global bifurcation sheet which we constructed by using complete elliptic integrals in a previous paper.
Citation: Tatsuki Mori, Kousuke Kuto, Tohru Tsujikawa, Shoji Yotsutani. Exact multiplicity of stationary limiting problems of a cell polarization model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5627-5655. doi: 10.3934/dcds.2016047
References:
[1]

J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval,, Arch. Rational Mech. Anal., 86 (1984), 317.  doi: 10.1007/BF00280031.  Google Scholar

[2]

S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals,, Discrete and Continuous Dynamical Systems, 19 (2007), 609.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105.  doi: 10.3934/dcdsb.2010.14.1105.  Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II,, Nonlinearity, 26 (2013), 1313.  doi: 10.1088/0951-7715/26/5/1313.  Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint,, Discrete and Continuous Dynamical Systems Supplement, (2013), 467.  doi: 10.3934/proc.2013.2013.467.  Google Scholar

[6]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[7]

T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization,, Dynamical Systems, (2015), 861.  doi: 10.3934/proc.2015.0861.  Google Scholar

[8]

Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system,, Biophys J., 94 (2008), 3684.   Google Scholar

[9]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization,, SIAM J. Appl. Math., 71 (2011), 1401.  doi: 10.1137/10079118X.  Google Scholar

[10]

J. Smoller, Shock Waves and Reaction Diffusion Equations,, Springer, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

show all references

References:
[1]

J. Carr, M. E. Gurtin and M. Semrod, Structured phase transitions on a finite interval,, Arch. Rational Mech. Anal., 86 (1984), 317.  doi: 10.1007/BF00280031.  Google Scholar

[2]

S. Kosugi Y. Morita and S. Yotsutani, Stationary solutions to the one-dimensional Cahn-Hilliard equation: Proof by the complete elliptic integrals,, Discrete and Continuous Dynamical Systems, 19 (2007), 609.  doi: 10.3934/dcds.2007.19.609.  Google Scholar

[3]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model I,, Discrete Contin. Dyn. Syst. Ser. B, 14 (2010), 1105.  doi: 10.3934/dcdsb.2010.14.1105.  Google Scholar

[4]

K. Kuto and T. Tsujikawa, Stationary patterns for an adsorbate-induced phase transition model II,, Nonlinearity, 26 (2013), 1313.  doi: 10.1088/0951-7715/26/5/1313.  Google Scholar

[5]

K. Kuto and T. Tsujikawa, Bifurcation structure of steady-states for bistable equations with nonlocal constraint,, Discrete and Continuous Dynamical Systems Supplement, (2013), 467.  doi: 10.3934/proc.2013.2013.467.  Google Scholar

[6]

Y. Lou, W.-M. Ni and S. Yotsutani, On a limiting system in the Lotka-Voltera competition with cross diffusion,, Discrete Contin. Dyn. Syst., 10 (2004), 435.  doi: 10.3934/dcds.2004.10.435.  Google Scholar

[7]

T.Mori, K.Kuto, T.Tujikawa, M.Nagayama and S.Yotsutani, Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization,, Dynamical Systems, (2015), 861.  doi: 10.3934/proc.2015.0861.  Google Scholar

[8]

Y. Mori A. Jilkine and L. Edelstein-Keshet, Wave-pinning and cell polarity from a bistable reaction-diffusion system,, Biophys J., 94 (2008), 3684.   Google Scholar

[9]

Y. Mori, A. Jilkine and L. Edelstein-Keshet, Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization,, SIAM J. Appl. Math., 71 (2011), 1401.  doi: 10.1137/10079118X.  Google Scholar

[10]

J. Smoller, Shock Waves and Reaction Diffusion Equations,, Springer, (1994).  doi: 10.1007/978-1-4612-0873-0.  Google Scholar

[11]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions,, J. Differential Equations, 39 (1981), 269.  doi: 10.1016/0022-0396(81)90077-2.  Google Scholar

[1]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[2]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[3]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[4]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[5]

W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137

[6]

Lianzhang Bao, Zhengfang Zhou. Traveling wave solutions for a one dimensional model of cell-to-cell adhesion and diffusion with monostable reaction term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 395-412. doi: 10.3934/dcdss.2017019

[7]

Tatsuki Mori, Kousuke Kuto, Masaharu Nagayama, Tohru Tsujikawa, Shoji Yotsutani. Global bifurcation sheet and diagrams of wave-pinning in a reaction-diffusion model for cell polarization. Conference Publications, 2015, 2015 (special) : 861-877. doi: 10.3934/proc.2015.0861

[8]

Yuxiao Guo, Ben Niu. Bautin bifurcation in delayed reaction-diffusion systems with application to the segel-jackson model. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6005-6024. doi: 10.3934/dcdsb.2019118

[9]

Stanisław Migórski, Shengda Zeng. The Rothe method for multi-term time fractional integral diffusion equations. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 719-735. doi: 10.3934/dcdsb.2018204

[10]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[11]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[12]

Michele V. Bartuccelli, S.A. Gourley, Y. Kyrychko. Comparison and convergence to equilibrium in a nonlocal delayed reaction-diffusion model on an infinite domain. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1015-1026. doi: 10.3934/dcdsb.2005.5.1015

[13]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[14]

Matthieu Alfaro, Jérôme Coville, Gaël Raoul. Bistable travelling waves for nonlocal reaction diffusion equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1775-1791. doi: 10.3934/dcds.2014.34.1775

[15]

Sophia Th. Kyritsi, Nikolaos S. Papageorgiou. Multiple solutions for nonlinear elliptic equations with an asymmetric reaction term. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2469-2494. doi: 10.3934/dcds.2013.33.2469

[16]

Dong Li, Xiaoyi Zhang. On a nonlocal aggregation model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 301-323. doi: 10.3934/dcds.2010.27.301

[17]

Armel Ovono Andami. From local to nonlocal in a diffusion model. Conference Publications, 2011, 2011 (Special) : 54-60. doi: 10.3934/proc.2011.2011.54

[18]

Elisabeth Logak, Isabelle Passat. An epidemic model with nonlocal diffusion on networks. Networks & Heterogeneous Media, 2016, 11 (4) : 693-719. doi: 10.3934/nhm.2016014

[19]

Hermann J. Eberl, Messoud A. Efendiev, Dariusz Wrzosek, Anna Zhigun. Analysis of a degenerate biofilm model with a nutrient taxis term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 99-119. doi: 10.3934/dcds.2014.34.99

[20]

L.R. Ritter, Akif Ibragimov, Jay R. Walton, Catherine J. McNeal. Stability analysis using an energy estimate approach of a reaction-diffusion model of atherogenesis. Conference Publications, 2009, 2009 (Special) : 630-639. doi: 10.3934/proc.2009.2009.630

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (3)

[Back to Top]